Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
111
всего попыток:
171
Два бизнесмена решили продать принадлежавшие им акции, а вырученные деньги разделить поровну. По совпадению каждая акция стоила столько у.е., сколько у них было всего акций. С ними расплатились купюрами по 10 у.е. и несколькими (меньше 10-ти) купюрами по 1 у.е. Делили они так: первому десятку — второму десятку, снова первому — затем второму. В конце выяснилось, что первому досталась последняя десятка, а второму не хватило. Тогда первый выписал второму чек на некоторую сумму и отдал все банкноты по 1 у.е. На какую сумму в у.е. первый выписал чек второму?
Задачу решили:
34
всего попыток:
173
Перед Вами 56 одинаковых на вид кубиков — 28 берёзовых и 28 сосновых. Любой сосновый кубик на полграмма легче любого берёзового. Ваша задача: используя чашечные весы без гирь, отложить две разного веса кучки из одинакового числа кубиков. Какое наименьшее число взвешиваний Вам потребуется?
Задачу решили:
67
всего попыток:
108
Кенгуру-чемпион может прыгать по прямой вправо и влево и совершать гигантские прыжки. Длина его первого прыжка составляет 1 м, второго — 2 м, третьего — 4 м и так далее (длина каждого прыжка всегда в два раза больше, чем предыдущего). Через какое минимальное количество прыжков кенгуру окажется на расстоянии D = 123456789123456789123456789 м от исходной точки O?
Задачу решили:
57
всего попыток:
92
Известно, что для трех различных натуральных чисел их сумма, а также суммы каждых двух являются квадратами целых чисел. Найдите минимальное произведение этих чисел.
Задачу решили:
46
всего попыток:
97
Найти максимальную длину такой последовательности натуральных чисел N(i), что N(i) <= 2013 для любого i, N(i) = | N(i-1) - N(i-2) | для i>2
Задачу решили:
67
всего попыток:
81
Найдите максимальное натуральное n, для которого {√n} = {√(n+100)}. Здесь {x} — дробная часть числа x, то есть разность между числом x и наибольшим не превосходящим его целым числом
Задачу решили:
55
всего попыток:
108
f(1111)=4, f(1234)=3, f(4567)=2, f(1357)=4, f(6518)=4, f(3817)=6, f(8008)=6, f(2014)=?
Задачу решили:
44
всего попыток:
118
Основание правильной пирамиды ABCD является квадратом со стороной 2. Вершина пирамиды E находится на высоте 1 от основания. На стороне CE посредине отмечена точка F. Муравей ползет из точки A в точку F по кратчайшему пути. Найдите квадрат расстояния пройденного муравьем.
Задачу решили:
48
всего попыток:
56
Пусть m и n - различные натуральные числа такие, что их средние гармоническое, геометрическое и арифметическое тоже натуральные числа. Чему равно минимальное возможное значение среднего арифметического?
Задачу решили:
59
всего попыток:
89
Для действительных чисел x, y, z, u верны следующие уравнения: x2+y2=16, z2+u2=25, xu-yz=20. Найти максимум x·z.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|