img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 34
всего попыток: 63
Задача опубликована: 13.06.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Timur

На квадратном коврике со стороной 120 см есть несколько пятен, площадь каждого из которых не больше 36 см2. Известно, что любая прямая, параллельная одной из сторон квадрата, пересекает не более одного пятна. Сколько см2 может составлять наибольшая общая площадь всех пятен?

Задачу решили: 118
всего попыток: 127
Задача опубликована: 24.06.11 08:00
Прислал: marafon img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

В равенстве СТУПЕНЬКА=ТТППЬ×ТТППЬ каждая буква означает цифру, разные буквы — разные цифры. Нулей нет. Чему равна СТУПЕНЬКА?

Задачу решили: 51
всего попыток: 762
Задача опубликована: 15.08.11 08:00
Прислал: Timur img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: bbny

Даны чашечные весы, имеющие особенность — они могут выдержать ровно 3 взвешивания (неважно в каком порядке) неравных грузов, после чего ломаются. Одинаковые веса можно уравновешивать на этих весах бесконечное количество раз. Среди N монет есть одна фальшивая, вес которой меньше настоящих. Найдите максимальное N при котором можно найти фальшивую не более, чем за 7 взвешиваний на этих весах.

Задачу решили: 30
всего попыток: 159
Задача опубликована: 05.09.11 08:00
Прислал: Sam777e img
Источник: Интервью при приёме на работу, задача 113
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Timur

У Вас есть 10 одинаковых стеклянных шариков. Вы бросаете их — можно по одному — с разных этажей 1015-этажного небоскрёба, чтобы выяснить, на каком этаже они начинают разбиваться от падения. (Например, на пятом уже разбиваются, а на четвёртом еще нет.) Разрешается сделать не более n бросков и разбить все 10 шариков. Найдите минимальное значение n, при котором ещё возможно гарантированно определить, при броске с какого именно этажа шарики начинают разбиваться. Учтите, что шарик может разбиться и на первом этаже, а может не разбиться и на последнем.

Задачу решили: 64
всего попыток: 99
Задача опубликована: 08.10.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Числа x, x−5, x+5 — квадраты рациональных чисел. Найдите x

Задачу решили: 60
всего попыток: 82
Задача опубликована: 17.10.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Найдите сумму наибольших нечётных делителей всех целых чисел от n+1 до 2n включительно, где n — целое и n>0. В ответе укажите её значение при n=2011.

Задачу решили: 73
всего попыток: 90
Задача опубликована: 23.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Для натуральных чисел a, m, n (101 ≤ a ≤ 199) выполнены следующие два условия:
(a) m + n кратно a, 
(b) mn = a (a + 1).
Найдите значение m + n.

Задачу решили: 44
всего попыток: 60
Задача опубликована: 27.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Timur

Найдите количество четверок натуральных чисел (a, b, c, n), для которых выполнены два условия:
(a) na + 2nb = nc
(b) a + b + c ≤ 500.

Задачу решили: 69
всего попыток: 154
Задача опубликована: 02.04.12 08:00
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Сколькими способами можно расставить 8 королей на доске 2*16 (2 строки, 16 столбцов) так, чтобы они не угрожали друг другу (короли не должны располагаться рядом, в том числе и по диагонали}?

 

Задачу решили: 28
всего попыток: 46
Задача опубликована: 26.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Определим функцию двух переменных f(n,m), где n≥0 (из множества неотрицательных целых чисел), а m любое целое число так, что f(n,m):{Z+xZ}→Z и определяется следующим образом:

1. f(0,m)=1, если m=0 или m=1;

2. f(0,m)=0, если m≠0 и m≠1;

3. f(n,m)=f(n-1,m)+f(n-1,m-2·n) при n>0; любых m;

Найдите сумму  \sum\limits_{m=0}^{2551} f(50,m)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.