Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
69
всего попыток:
71
Точка М - середина стороны АВ треугольника АВС. На отрезке СМ выбраны точки P и Q так,что СQ=2*РМ. Оказалось, что угол АРМ = 90. Найдите BQ/AC.
Задачу решили:
28
всего попыток:
46
Определим функцию двух переменных f(n,m), где n≥0 (из множества неотрицательных целых чисел), а m любое целое число так, что f(n,m):{Z+xZ}→Z и определяется следующим образом: 1. f(0,m)=1, если m=0 или m=1; 2. f(0,m)=0, если m≠0 и m≠1; 3. f(n,m)=f(n-1,m)+f(n-1,m-2·n) при n>0; любых m; Найдите сумму
Задачу решили:
43
всего попыток:
84
В одной кучке лежит n камней, а в другой – k камней. Каждую минуту автомат выбирает кучку, в которой четное число камней, и половину имеющихся в ней камней перекладывает в другую кучку (если в обеих кучках четное число камней, то автомат выбирает кучку случайным образом). Если в обеих кучках число камней оказалось нечетным, автомат прекращает работу. Сколько существует упорядоченных пар натуральных чисел (n, k), не превосходящих 1000, для которых автомат через конечное время обязательно остановится?
Задачу решили:
32
всего попыток:
71
Дана белая клетчатая доска 10?10. Игрок хочет провести в каждой клетке диагональ и закрасить один из получающихся треугольников в черный цвет так, чтобы к любой границе двух клеток примыкали два одноцветных треугольника. Сколькими различным способами игрок может это сделать?
Задачу решили:
34
всего попыток:
103
Рассмотрим поочередно всевозможные упорядоченные пары подмножеств данного 2013-элементного множества. Для каждой пары запишем число элементов в пересечении этих подмножеств. Какое число будет написано больше всего раз, когда будут рассмотрены все пары подмножеств?
Задачу решили:
52
всего попыток:
76
Из бесконечной шахматной доски по границам клеток вырезана связная фигура (ладья может пройти из любой клетки в любую другую, не покидая доску, передвигаясь каждый раз на одну клетку). В вырезанной фигуре оказалось 2013 черных клеток. Каково максимальное возможное количество белых клеток в этой фигуре?
Задачу решили:
50
всего попыток:
63
Имеется 2000 точек. Какое максимальное число троек можно из них выбрать так, чтобы каждые две тройки имели ровно одну общую точку?
Задачу решили:
35
всего попыток:
68
Клетки бесконечной вправо клетчатой полоски последовательно занумерованы числами
Задачу решили:
43
всего попыток:
112
Про 27 монет известно, что 26 из них настоящие и весят 1 грамм, а ещё одна монета фальшивая и весит m, m+1 или m+2 граммов (где m — натуральное число, известное взвешивающему). Оказалось, что за два взвешивания на чашечных весах без гирь можно определить вес фальшивой монеты. При каком наибольшем m это возможно?
Задачу решили:
48
всего попыток:
62
На окружности отмечены 2006 точек. Сначала Петя проводит N хорд с концами в этих точках. Затем Валя красит половину отмеченных точек в один цвет, а остальные – в другой. Петя выигрывает, если найдется хорда с концами разного цвета. При каком наименьшем N Валя не сможет ему помешать?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|