img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 35
всего попыток: 68
Задача опубликована: 14.10.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Клетки бесконечной вправо клетчатой полоски последовательно занумерованы числами
0, 1, 2, ….В некоторых клетках лежат камни. Если на i-ой клетке (i > 0) лежит ровно i камней, то разрешается снять их с нее и разложить по одному на клетки с номерами i–1, i–2, …, 0. Леша разложил 2006! камней по клеткам, начиная с первой, так, чтобы можно было собрать их в нуле, сделав несколько операций. Каким может быть минимальный номер клетки, на которой лежит камень?

Задачу решили: 43
всего попыток: 112
Задача опубликована: 13.11.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Про 27 монет известно, что 26 из них настоящие и весят 1 грамм, а ещё одна монета фальшивая и весит m, m+1 или m+2 граммов (где m — натуральное число, известное взвешивающему). Оказалось, что за два взвешивания на чашечных весах без гирь можно определить вес фальшивой монеты. При каком наибольшем m это возможно?

Задачу решили: 48
всего попыток: 62
Задача опубликована: 02.12.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

На окружности отмечены 2006 точек. Сначала Петя проводит N хорд с концами в этих точках. Затем Валя красит половину отмеченных точек в один цвет, а остальные – в другой. Петя выигрывает, если найдется хорда с концами разного цвета. При каком наименьшем N Валя не сможет ему помешать?

Задачу решили: 32
всего попыток: 68
Задача опубликована: 23.12.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Суду в качестве вещественного доказательства предъявлено 100 одинаковых по весу монет, вес каждой больше 10 г (однако суд не знает, что они одинаковы). К сожалению, имеющиеся в суде весы показывают вес любого груза с отклонением ровно в 1 г — иногда в бóльшую, а иногда в меньшую сторону (и, к счастью, суд знает об этом). При каком наибольшем k эксперт может доказать суду, что среди монет есть не менее k одинаковых?

Задачу решили: 47
всего попыток: 59
Задача опубликована: 25.12.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2008
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Даны n действительных чисел a1, a2, …, an. Известно, что все попарные суммы ai+aj (i ≠ j) – различны и в порядке возрастания образуют арифметическую прогрессию. Найдите максимально возможное n?

Задачу решили: 38
всего попыток: 58
Задача опубликована: 17.02.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В очереди стояло 20 человек. Касса сломалась, и все перешли в соседнюю только что открывшуюся кассу. Сколькими способами они могут выстроиться в новую очередь так, чтобы человек, стоявший на месте с номером k изменил свой номер в очереди не более чем на k?

Задачу решили: 18
всего попыток: 122
Задача опубликована: 30.06.14 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Найти количество пар взаимно-простостых целых чисел (m, n), таких что 0 < m < n < 10100, и m | (n2-11) и n | (m2-11).

Задачу решили: 28
всего попыток: 88
Задача опубликована: 25.09.14 18:32
Прислал: leonid img
Источник: Ленинградские олимпиады
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Числовая последовательность задаётся уравнениями

 | xn | = | xn–1 + 1|;  x0=0.

Найдите min | x1+x2+…+x2014|.

Задачу решили: 26
всего попыток: 32
Задача опубликована: 11.02.15 08:00
Прислал: pvpsaba img
Источник: Международная Жаутыковская олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Определите максимальное целое число n такое, что для каждого натурального k, k≤n/2, имеются два положительных делителя n с разницей k.

Задачу решили: 32
всего попыток: 67
Задача опубликована: 23.11.15 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найти наименьшее натуральное p, для которого найдется натуральное q>p такое, что выполняется равенство:
[p1/2]+[(p+1)1/2]+...+[q1/2]=2011, где [x] - целая часть числа x.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.