Лента событий:
putout
добавил решение задачи
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
42
всего попыток:
47
В прямоугольную таблицу вписаны некоторые числа (по одному числу в каждую клетку). Разрешается одновременно изменить знаки на противоположные у всех чисел любого столбца или любой строки. Эту операцию можно применить сколько угодно раз. Всегда ли можно добиться, чтобы суммы чисел, стоящих в каждой строке и в каждом столбце стали неотрицательными?
Задачу решили:
99
всего попыток:
271
Можно ли из нескольких остроугольных треугольников сложить тупоугольный? (Если можно — укажите минимальное число остроугольных треугольников, если нельзя — введите 0. Накладывать треугольники друг на друга и оставлять пустоты нельзя.)
Задачу решили:
49
всего попыток:
95
В выпуклом 2010-угольнике отметили некоторые точки (не являющиеся его вершинами) так, что в произвольном треугольнике, образованном любыми тремя вершинами 2010-угольника, нашлась отмеченная точка. Найдите наименьшее число отмеченных точек.
Задачу решили:
41
всего попыток:
54
Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади которых — целые числа. Может ли площадь четырёхугольника быть простым числом?
Задачу решили:
38
всего попыток:
124
Треугольник, лежащий на координатной плоскости, обладает следующим свойством: при его параллельном переносе на любой ненулевой вектор, обе координаты которого кратны 30, сдвинутый треугольник не перекрывает исходный (т.е. их внутренности не пересекаются). Найти наибольшую площадь исходного треугольника.
Задачу решили:
126
всего попыток:
337
У Вас есть 5 камешков, массы любых двух из которых различны, и чашечные весы без гирь. За какое наименьшее число взвешиваний Вам удастся гарантированно расположить камешки по возрастанию массы?
Задачу решили:
63
всего попыток:
143
Найдите наибольшее целое число, десятичная запись которого обладает следующими свойствами: 1) она не заканчивается 0; 2) в результате вычёркивания одной из её цифр — но не первой — получается делитель исходного числа (точнее, его десятичная запись).
Задачу решили:
50
всего попыток:
188
У выпуклого многогранника 2010 рёбер. Какое наибольшее число из них могут пересекать плоскость, не проходящую через вершины многогранника?
Задачу решили:
26
всего попыток:
42
Может ли множество всех положительных действительных чисел являться множеством значений многочлена с действительными коэффициентами от двух действительных переменных?
Задачу решили:
61
всего попыток:
254
Конечная арифметическая прогрессия с ненулевой разностью состоит из целых положительных чисел, десятичная запись каждого из которых не содержит ни одной девятки. Найдите наибольшее число членов в такой прогрессии.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|