img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: putout добавил решение задачи "Три точки на прямой" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 27
+ЗАДАЧА 45. Коробочка (Н.Б.Васильев)
  
Задачу решили: 115
всего попыток: 372
Задача опубликована: 01.04.09 22:49
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

Какова наибольшая возможная площадь ортогональной проекции на горизонтальную плоскость прямоугольного параллелепипеда со сторонами 10, 20 и 30 см? (Ответ дайте в квадратных сантиметрах.)

Задачу решили: 171
всего попыток: 572
Задача опубликована: 16.04.09 20:17
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

На сколько процентов максимально возможная площадь круга, лежащего внутри куба, больше площади круга, вписанного в его грань?

Задачу решили: 140
всего попыток: 412
Задача опубликована: 16.04.09 20:17
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Сколько градусов составляет наименьший угловой размер большой диагонали куба, если смотреть с его поверхности (исключая, разумеется, концы самой диагонали)?

+ 19
+ЗАДАЧА 61. Номера у рёбер куба (Н.Б.Васильев, Н.Н.Константинов)
  
Задачу решили: 123
всего попыток: 463
Задача опубликована: 21.04.09 10:45
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Сколько имеется различных нумераций всех рёбер куба числами от 1 до 12, обладающих следующим свойством: сумма номеров рёбер, сходящихся в одной вершине, — одна и та же для всех вершин куба? (Две нумерации считаются разными, если они не переходят друг в друга при любом вращении куба.)

Задачу решили: 277
всего попыток: 916
Задача опубликована: 26.04.09 11:16
Прислала: xyz img
Источник: 4-й заочный конкурс учителей математики
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Имеются две пирамиды: основание одной — треугольник, а другой — четырёхугольник; все рёбра пирамид равны. Пирамиды приложили друг к другу так, что две их треугольные грани полностью совпали. Сколько граней у получившегося многогранника?

Задачу решили: 161
всего попыток: 647
Задача опубликована: 27.04.09 22:47
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Rep (Сергей Репин)

Какое минимальное количество шаров (любых размеров) нужно разместить вне заданной точки пространства так, чтобы каждый луч с началом в этой точке пересекал хотя бы один из шаров, а сами шары не пересекались?

Задачу решили: 151
всего попыток: 238
Задача опубликована: 06.06.09 14:29
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

На какое наименьшее (но большее 1) число кубов, среди которых нет двух равных, можно разбить прямоугольный параллелепипед? Если Вы считаете, что такое разбиение невозможно, то введите 0.

(Аналогичный вопрос для плоскости ставится в задаче "Прямоугольник из разных квадратов".)
Задачу решили: 59
всего попыток: 391
Задача опубликована: 29.06.09 15:52
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В пространстве даны шар и три различные плоскости, возможно его пересекающие. Каково максимально возможное число разных способов, которыми можно разместить в пространстве второй шар так, чтобы он касался первого и трёх данных плоскостей?

Задачу решили: 143
всего попыток: 595
Задача опубликована: 05.08.09 12:53
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: iVantus

Гусеница сидит внутри закрытой коробки длиной 75 см, шириной 32 см и высотой 32 см, посередине боковой квадратной стенки на высоте 3 см от дна. Посередине противоположной стенки на 3 см ниже крышки в коробке есть маленькое отверстие, через которое гусеница хочет выбраться на свободу.

Какое наименьшее число сантиметров ей придётся преодолеть, чтобы вылезти из отверстия? (Ответ округлите до ближайшего целого числа.)

Задачу решили: 102
всего попыток: 178
Задача опубликована: 28.08.09 11:43
Прислал: Rep img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

В треугольной пирамиде OABC плоские углы при вершине O — прямые, а площади боковых граней OAB, OAC и OBC равны 51, 53 и 60 соответственно. Найти высоту пирамиды, опущенную из вершины O.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.