img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 171
всего попыток: 401
Задача опубликована: 25.03.09 19:55
Прислал: demiurgos img
Источник: В.И.Арнольд "Задачи для детей от 5 до 15 лет"...
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: NushN (Анна Григорук)

Рассмотрим два различных тетраэдра, вписанные в куб так, что вершины каждого являются вершинами куба, а ребра — диагоналями граней.  Во сколько раз объем куба больше, чем пересечение этих тетраэдров?

Задачу решили: 198
всего попыток: 375
Задача опубликована: 22.04.09 20:25
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: casper

Сколько квадратных сантиметров составляет максимально возможная площадь ортогональной проекции на горизонтальную плоскость правильного тетраэдра со стороной 10 см?

Задачу решили: 110
всего попыток: 715
Задача опубликована: 30.05.09 14:13
Прислал: admin img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: Anton_Lunyov

Окружим Землю вдоль экватора ремнём, так чтобы он плотно прилегал к поверхности по всей длине. Землю будем считать идеальным шаром с радиусом 6 400 000 метров. Увеличим длину ремня на 1 метр. Теперь возьмём за одну точку ремня и натянем его так, чтобы ремень плотно прилегал к противоположной точке экватора, в результате точка, за которую мы потянули, поднимется над экватором на некоторую высоту. Чему будет равна эта высота? В ответе укажите ближайшее целое число метров. 

Задачу решили: 131
всего попыток: 329
Задача опубликована: 22.06.09 21:38
Прислал: demiurgos img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: fedyakov

Сколько кубических сантиметров составляет объём пересечения двух (достаточно длинных) цилиндров, оси которых пересекаются под прямым углом, а диаметры равны 3 см?

Задачу решили: 31
всего попыток: 42
Задача опубликована: 26.11.09 10:00
Прислал: TALMON img
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: min

Представить в конечном виде: Cn0·xnCn1·(x−1)n+Cn2·(x−2)nCn3·(x−3)n+...+(−1)n·Cnn·(xn)n, где Cnk=n!/(k!·(n-k)!), n!=1·2·3·...·n, а 0!=1.

Задачу решили: 56
всего попыток: 159
Задача опубликована: 19.03.10 08:00
Прислал: demiurgos img
Источник: Московская олимпиада
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Функция ƒ, определённая на всех векторах трёхмерного пространства, такова, что для любых действительных чисел a, b и любых векторов x, y выполняется неравенство

ƒ(ax+by) ≤ max {ƒ(x), ƒ(y)}.

Какое наибольшее число различных значений может принимать функция ƒ?

Задачу решили: 49
всего попыток: 301
Задача опубликована: 04.06.10 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Вычислите


и округлите результат до ближайшего целого числа.

Задачу решили: 74
всего попыток: 262
Задача опубликована: 17.09.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 3 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Сколько положительных действительных решений имеет каждое из следующих уравнений:

Напишите оба числа подряд, без пробелов. Порядок "многоэтажного" возведения в степень — сверху вниз. Формально в левой части каждого из уравнений написан предел:

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.