Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
43
всего попыток:
153
Сколько существует натуральных чисел m от единицы до миллиона включительно, для каждого из которых найдётся натуральное число N, имеющее ровно в m раз меньше различных натуральных делителей, чем его квадрат N2?
Задачу решили:
61
всего попыток:
113
Все целые числа от 1 до 999 выписали в строку (совсем необязательно в порядке возрастания). В каждой пятёрке чисел, написанных подряд, подчеркнули среднее по величине (т.е. третье по возрастанию). Какое наименьшее количество чисел могло быть подчеркнуто?
Задачу решили:
55
всего попыток:
298
На подводной лодке служат 25 матросов и капитан. Капитан хочет составить как можно больше нарядов по пять матросов в каждом так, чтобы никакие два наряда не имели более одного общего матроса. Помогите, пожалуйста, капитану и напишите максимальное количество нарядов, которое он сможет составить.
Задачу решили:
40
всего попыток:
194
Множество X состоит из различных (но не всех) натуральных чисел от 1 до 2010 включительно и не содержит ни одной степени двойки с целым показателем. Кроме того, сумма любых двух чисел из X не равна степени двойки ни с каким целым показателем. Найдите наибольшее количество чисел в X.
Задачу решили:
45
всего попыток:
143
Вася написал программу, описывающую подбрасывание нечестной монетки. Первый раз всегда выпадает орёл, второй раз — решка. Начиная с третьего броска вероятность выпадения орла равна отношению числа выпавших до этого орлов к числу произведённых до этого бросков. Например, вероятность выпадения орла при третьем броске равна 1/2, ибо до этого выпали ровно один орёл и ровно одна решка. С какой вероятностью при первых 300 бросках 200 раз выпадет орёл и 100 раз — решка? (Ответ введите в виде несократимой дроби p/q, где p и q — натуральные числа.)
Задачу решили:
50
всего попыток:
176
В трёх стаканах находится a, b и c мл воды, где 0<a<b<c≤200. Разрешена такая операция: количество воды в любом стакане можно удвоить, переливая из любого другого стакана, в котором для этого достаточно воды. Цель: посредством таких операций полностью опорожнить какой-нибудь стакан. Найдите число троек целых чисел a, b, c, для которых цель не может быть достигнута.
Задачу решили:
76
всего попыток:
102
С каждым из чисел от 000 000 до 999 999 поступим следующим образом: умножим первую цифру на 1, вторую на 2 и так далее, последнюю — на 6. Сумму полученных шести чисел назовём характеристикой исходного числа. Характеристики скольких чисел делятся на 7?
Задачу решили:
57
всего попыток:
112
Марина пришла в казино и решила сыграть в следующую игру. На 100 карточках с обеих сторон написаны (по разу) все натуральные числа от 1 до 200. Карточки выложены на стол так, что видны только числа, написанные сверху. Марина может выбрать несколько карточек и одновременно перевернуть их, а затем сложить все 100 чисел, которые окажутся после этого наверху — полученная сумма и будет её выигрышем. Какую наибольшую сумму Марина может гарантированно выиграть?
Задачу решили:
72
всего попыток:
256
Сколько различных действительных решений имеет уравнение f(f(x))=x, где f(x)=|4021·|x|−2011|−2010?
Задачу решили:
64
всего попыток:
178
Сколько различных чисел встречается среди чисел [12/n], [22/n], [32/n], ..., [(n−1)2/n], [n2/n] (где [x] — целая часть числа x)? В ответе укажите последнюю цифру при n=20112011.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|