img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 30
  
Задачу решили: 111
всего попыток: 171
Задача опубликована: 22.04.11 08:00
Прислал: marafon img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: putout (Дмитрий Лебедев)

Два бизнесмена решили продать принадлежавшие им акции, а вырученные деньги разделить поровну. По совпадению каждая акция стоила столько у.е., сколько у них было всего акций. С ними расплатились купюрами по 10 у.е. и несколькими (меньше 10-ти) купюрами по 1 у.е. Делили они так: первому десятку — второму десятку, снова первому — затем второму. В конце выяснилось, что первому досталась последняя десятка, а второму не хватило. Тогда первый выписал второму чек на некоторую сумму и отдал все банкноты по 1 у.е. На какую сумму в у.е. первый выписал чек второму?

Задачу решили: 94
всего попыток: 152
Задача опубликована: 25.04.11 08:00
Прислала: Karine img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Укажите максимальное значение выражения , если  и  для любого .

Задачу решили: 76
всего попыток: 185
Задача опубликована: 11.05.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Сколько целых положительных решений имеет уравнение:
?

Задачу решили: 91
всего попыток: 139
Задача опубликована: 06.06.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Внутри прямоугольника со сторонами 20 и 30 отмечена точка . Найдите минимальное значение выражения .

Задачу решили: 34
всего попыток: 63
Задача опубликована: 13.06.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Timur

На квадратном коврике со стороной 120 см есть несколько пятен, площадь каждого из которых не больше 36 см2. Известно, что любая прямая, параллельная одной из сторон квадрата, пересекает не более одного пятна. Сколько см2 может составлять наибольшая общая площадь всех пятен?

Задачу решили: 118
всего попыток: 127
Задача опубликована: 24.06.11 08:00
Прислал: marafon img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

В равенстве СТУПЕНЬКА=ТТППЬ×ТТППЬ каждая буква означает цифру, разные буквы — разные цифры. Нулей нет. Чему равна СТУПЕНЬКА?

Задачу решили: 50
всего попыток: 154
Задача опубликована: 25.07.11 08:00
Прислал: volinad img
Источник: Задача 608 (при поддержке Vkorsukov'а)
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: xxxSERGEYxxx

Внутри прямоугольного треугольника ABC нашлись две точки, одна из которых удалена от прямых AB, BC и CA на расстояния 20, 24 и 30 соответственно, а другая — на расстояния 30, 26 и 20. Найдите сумму всех возможных значений периметра треугольника ABC.

 

Задачу решили: 41
всего попыток: 213
Задача опубликована: 08.08.11 08:00
Прислал: zmerch img
Источник: Всеукраинские олимпиады школьников
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Единичный вектор проектируется на прямые, содержащие диагонали правильного одиннадцатиугольника. Сумма указанных проекций образует вектор a. Найти максимальное значение длины вектора a.

Задачу решили: 58
всего попыток: 133
Задача опубликована: 17.08.11 08:00
Прислал: zmerch img
Источник: Всеукраинские олимпиады школьников
Вес: 1
сложность: 3 img
баллы: 100
Темы: алгебраimg

Многочлен вида a0xn+a1xn−1+…+an, назовём однообразным, если n>0, а каждый из его n+1 коэффициентов и каждый из его n корней равен 1 или −1. Сколько существует различных однообразных многочленов?

Задачу решили: 12
всего попыток: 49
Задача опубликована: 29.08.11 08:00
Прислал: Timur img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На листе бумаги в форме равностороннего треугольника со стороной 30 см разбрызганы капли чернил. Если на этом листе нарисовать (косоугольную) систему координат с произвольным началом, осями, параллельными любым двум сторонам листа, и масштабом 1 см вдоль обеих осей, то хотя бы одна точка с целыми координатами обязательно окажется окрашенной чернилами. Какое наименьшее целое число квадратных миллиметров может составлять общая площадь всех клякс? (Можно считать, что каждая клякса — многоугольник или круг, а всех клякс — конечное число.)

(Присланная задача изменена администрацией)
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.