Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
198
всего попыток:
375
Сколько квадратных сантиметров составляет максимально возможная площадь ортогональной проекции на горизонтальную плоскость правильного тетраэдра со стороной 10 см?
Задачу решили:
240
всего попыток:
333
Найдите минимальное натуральное число, которое увеличивается в два раза после перестановки его последней цифры в начало числа. (Все остальные цифры сдвигаются при этом вправо.)
(Предлагалась на "Первом математическом")
Задачу решили:
270
всего попыток:
432
С целью ухода от налогов первый из 5 друзей торговцев одолжил остальным столько денег, сколько было у каждого. Затем также поступил второй, потом третий, потом четвёртый, и наконец пятый. После всех пяти процедур капитал каждого не изменился. Каков капитал первого торговца, если капитал последнего составляет 100 экю?
(Предлагалась на "Первом математическом")
Задачу решили:
277
всего попыток:
916
Имеются две пирамиды: основание одной — треугольник, а другой — четырёхугольник; все рёбра пирамид равны. Пирамиды приложили друг к другу так, что две их треугольные грани полностью совпали. Сколько граней у получившегося многогранника?
Задачу решили:
161
всего попыток:
647
Какое минимальное количество шаров (любых размеров) нужно разместить вне заданной точки пространства так, чтобы каждый луч с началом в этой точке пересекал хотя бы один из шаров, а сами шары не пересекались?
Задачу решили:
215
всего попыток:
586
В колонию из 2009 бактерий попадает вирус. Через секунду он уничтожает одну бактерию. Ещё через секунду все бактерии и все вирусы делятся надвое. Далее каждый вирус через секунду после своего рождения уничтожает одну бактерию, а ещё через секунду после этого все бактерии и все вирусы делятся надвое. Через сколько секунд после попадания вируса все бактерии будут уничтожены?
Задачу решили:
149
всего попыток:
242
Найти максимальное значение выражения |...|x1−x2|−x3|−x4|...−x998|−x999|, где x1, x2, x3, x4, ..., x998, x999 — различные натуральные числа от 1 до 999.
Задачу решили:
195
всего попыток:
548
Вам нужно попасть в тайную комнату. У входа в неё стоит диск (на картинке синий) с четырьмя отверстиями (на картинке жёлтыми), расположенными в вершинах квадрата. Внутри каждого отверстия спрятан переключатель, имеющий 2 положения: от центра диска (на картинке белое) и к его центру (на картинке чёрное). Разрешается засунуть руки в какие-либо 2 отверстия, пощупать, как стоят переключатели, и переключить один из них или оба. (Ничего не переключать нельзя!) После этого диск приходит в быстрое вращение, так что после его остановки уже нельзя установить, в какие именно отверстия Вы засовывали руки в прошлый раз. Дверь в комнату открывается, если во время вращения диска все переключатели стоят одинаково (все к центру или все от центра). Какое наименьшее число раз нужно засунуть руки в отверстия, чтобы гарантированно попасть в тайную комнату при полном отсутствии везения? Учтите, что исходные положения переключателей неизвестны — они могут стоять вразнобой...
Задачу решили:
203
всего попыток:
593
Сколько различных целочисленных решений имеет неравенство |x|+|y|≤2009 ?
Задачу решили:
159
всего попыток:
602
У Вас есть два одинаковых стеклянных шарика. Вы бросаете их — можно по одному — с разных этажей 36-этажного небоскрёба, чтобы выяснить, на каком этаже они начинают разбиваться от падения. (Например, на пятом уже разбиваются, а на четвёртом еще нет.) Разрешается сделать не более n бросков и разбить оба шарика. Найдите минимальное значение n, при котором ещё возможно гарантированно определить, при броске с какого именно этажа шарики начинают разбиваться. Учтите, что шарик может разбиться и на первом этаже, а может не разбиться и на последнем.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|