Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
215
всего попыток:
586
В колонию из 2009 бактерий попадает вирус. Через секунду он уничтожает одну бактерию. Ещё через секунду все бактерии и все вирусы делятся надвое. Далее каждый вирус через секунду после своего рождения уничтожает одну бактерию, а ещё через секунду после этого все бактерии и все вирусы делятся надвое. Через сколько секунд после попадания вируса все бактерии будут уничтожены?
Задачу решили:
149
всего попыток:
242
Найти максимальное значение выражения |...|x1−x2|−x3|−x4|...−x998|−x999|, где x1, x2, x3, x4, ..., x998, x999 — различные натуральные числа от 1 до 999.
Задачу решили:
195
всего попыток:
548
Вам нужно попасть в тайную комнату. У входа в неё стоит диск (на картинке синий) с четырьмя отверстиями (на картинке жёлтыми), расположенными в вершинах квадрата. Внутри каждого отверстия спрятан переключатель, имеющий 2 положения: от центра диска (на картинке белое) и к его центру (на картинке чёрное). Разрешается засунуть руки в какие-либо 2 отверстия, пощупать, как стоят переключатели, и переключить один из них или оба. (Ничего не переключать нельзя!) После этого диск приходит в быстрое вращение, так что после его остановки уже нельзя установить, в какие именно отверстия Вы засовывали руки в прошлый раз. Дверь в комнату открывается, если во время вращения диска все переключатели стоят одинаково (все к центру или все от центра). Какое наименьшее число раз нужно засунуть руки в отверстия, чтобы гарантированно попасть в тайную комнату при полном отсутствии везения? Учтите, что исходные положения переключателей неизвестны — они могут стоять вразнобой...
Задачу решили:
203
всего попыток:
593
Сколько различных целочисленных решений имеет неравенство |x|+|y|≤2009 ?
Задачу решили:
159
всего попыток:
602
У Вас есть два одинаковых стеклянных шарика. Вы бросаете их — можно по одному — с разных этажей 36-этажного небоскрёба, чтобы выяснить, на каком этаже они начинают разбиваться от падения. (Например, на пятом уже разбиваются, а на четвёртом еще нет.) Разрешается сделать не более n бросков и разбить оба шарика. Найдите минимальное значение n, при котором ещё возможно гарантированно определить, при броске с какого именно этажа шарики начинают разбиваться. Учтите, что шарик может разбиться и на первом этаже, а может не разбиться и на последнем.
Задачу решили:
151
всего попыток:
238
На какое наименьшее (но большее 1) число кубов, среди которых нет двух равных, можно разбить прямоугольный параллелепипед? Если Вы считаете, что такое разбиение невозможно, то введите 0.
(Аналогичный вопрос для плоскости ставится в задаче "Прямоугольник из разных квадратов".)
Задачу решили:
123
всего попыток:
390
В стране 21 аэропорт. Авиационное сообщение между ними осуществляют несколько авиакомпаний, каждой из которых разрешается совершать любые рейсы между 5 аэропортами. При каком наименьшем числе авиакомпаний можно перелететь из любого аэропорта в любой другой без пересадки?
Задачу решили:
110
всего попыток:
715
Окружим Землю вдоль экватора ремнём, так чтобы он плотно прилегал к поверхности по всей длине. Землю будем считать идеальным шаром с радиусом 6 400 000 метров. Увеличим длину ремня на 1 метр. Теперь возьмём за одну точку ремня и натянем его так, чтобы ремень плотно прилегал к противоположной точке экватора, в результате точка, за которую мы потянули, поднимется над экватором на некоторую высоту. Чему будет равна эта высота? В ответе укажите ближайшее целое число метров.
Задачу решили:
131
всего попыток:
329
Сколько кубических сантиметров составляет объём пересечения двух (достаточно длинных) цилиндров, оси которых пересекаются под прямым углом, а диаметры равны 3 см?
Задачу решили:
59
всего попыток:
154
По окружности расставлены 30 фишек: 20 белых и 10 чёрных. За один ход разрешается поменять местами любые две фишки, между которыми стоят ещё три фишки. Две расстановки фишек называются эквивалентными, если одну из них можно получить из другой несколькими такими ходами. Вопрос: сколько существует НЕэквивалентных расстановок?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|