img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 104
всего попыток: 182
Задача опубликована: 11.08.09 17:41
Прислала: Hasmik33 img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

В треугольнике ABC с площадью 420 от вершин к противоположным сторонам проведены отрезки AK, BL, CM так, что их концы делят стороны в отношении 2:1 (BK=2·KC, CL=2·LAAM=2·MB). Найдите площадь треугольника, ограниченного этими отрезками.

Задачу решили: 94
всего попыток: 453
Задача опубликована: 22.08.09 15:53
Прислала: Hasmik33 img
Источник: Я.И.Перельман "Занимательная алгебра"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Сколько существует таких положений часовых стрелок, что замена часовой на минутную и наоборот дает новое положение, тоже возможное на правильных часах?

+ 27
+ЗАДАЧА 192. Цветная шахматная доска (А.Печковский, И.Итенберг)
  
Задачу решили: 103
всего попыток: 199
Задача опубликована: 24.08.09 11:02
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: casper

Клетки шахматной доски раскрашены не в два цвета, а в несколько. Расстоянием между двумя клетками называется длина кратчайшего пути обычной шахматной ладьи от одной клетки до другой. (Длины сторон клеток равны единице.) Известно, что любые две клетки, находящиеся на расстоянии 6, — разных цветов. В какое наименьшее число цветов могут быть раскрашены клетки такой доски?

Задачу решили: 102
всего попыток: 178
Задача опубликована: 28.08.09 11:43
Прислал: Rep img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

В треугольной пирамиде OABC плоские углы при вершине O — прямые, а площади боковых граней OAB, OAC и OBC равны 51, 53 и 60 соответственно. Найти высоту пирамиды, опущенную из вершины O.

Задачу решили: 157
всего попыток: 391
Задача опубликована: 31.08.09 11:17
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Hasmik33

От города А до города Б расстояние 35 км. Два велосипедиста выехали из А и из Б одновременно и навстречу друг другу, первый со скоростью 19 км/ч, а второй — 16 км/ч. Перед отправлением на лоб первого велосипедиста, ехавшего из А, села муха, которая взлетела, как только он начал движение, и полетела по направлению к Б со скоростью 40 км/ч. Долетев до второго велосипедиста, ехавшего из Б, она села к нему на лоб, тут же взлетела и полетела к А со скоростью 30 км/ч. (Из А в Б дует ветер.) Долетев до первого велосипедиста, она снова села к нему на лоб, тут же взлетела и полетела к Б, села к нему на лоб... И так далее, пока велосипедисты не столкнулись лбами, раздавив муху. Сколько километров она пролетела?

Задачу решили: 87
всего попыток: 212
Задача опубликована: 01.09.09 15:22
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: fedyakov

Прямоугольный треугольник с углом 45° разрезан на n>1 подобных ему треугольников, никакие два из которых не совпадают по размерам. Найдите наименьшее возможное значение n.

(Задача носит исследовательский характер, поскольку никакого доказательства минимальности ответа, заложенного в систему, нам не известно. Вполне возможно, что участникам удастся его уменьшить!)
Задачу решили: 83
всего попыток: 465
Задача опубликована: 12.09.09 00:08
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Перед Вами 25 окопов в ряд. В каком-то из них сидит снайпер. У Вас в руках гранатомёт, позволяющий вдребезги разнести всё содержимое любого из окопов (сам окоп при этом остаётся цел). Сразу после того, как Вы делаете выстрел, снайпер по не известной Вам логике перебегает в соседний окоп (если Вы промазали). Остаться в том же окопе, равно как и перебежать дальше, чем в соседний окоп, он не может. Следующий выстрел. Перебежка. Выстрел. Перебежка. И так далее. Проблема в том, что ни снайпера, ни его перебежек Вы не видите.

Какое минимальное число выстрелов Вам понадобится, чтобы гарантированно ликвидировать снайпера?

(Задача носит исследовательский характер, поскольку доказательства минимальности ответа, заложенного в систему, нам не известно. Надеемся, что участники предложат такое доказательство!)
Задачу решили: 94
всего попыток: 208
Задача опубликована: 14.09.09 10:33
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Какое максимальное число сплошных треугольных пирамид, все рёбра которых равны 10 см, Вам удастся уложить в кубическую коробку с внутренними размерами 10×10×10 см (и закрыть её крышкой)?

Задачу решили: 105
всего попыток: 513
Задача опубликована: 27.09.09 10:19
Прислал: demiurgos img
Источник: И.Ф.Шарыгин "Математический винегрет"
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Грибник заблудился в лесу. Однако он уверен, что не дальше, чем в 3 км от него, находится прямое шоссе. Какое минимальное число км придётся преодолеть грибнику, чтобы наверняка (т.е. при полном отсутствии везения) выбраться на шоссе? Ответ округлите до ближайшего целого числа.

Задачу решили: 99
всего попыток: 202
Задача опубликована: 01.10.09 15:05
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: ODG (Игорь Логвинов)

На какое минимальное число частей нужно разрезать два неравных квадрата, чтобы из полученных частей можно было сложить квадрат (а лишних частей при этом не осталось)?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.