Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
65
всего попыток:
147
Какое наибольшее число костей домино можно выложить в цепь так, чтобы кости прилегали друг к другу числами, отличающимися на 1 (а не равными, как обычно); например: 00-15-43-46-55. (Домино состоит из 28 костей, на которых написаны всевозможные различные пары целых чисел от 0 до 6: 00, 01, 02, 03, 04, 05, 06, 11, 12,...)
Задачу решили:
99
всего попыток:
123
Сколько решений в целых числах имеет уравнение x2+y2=q+1, где q равно произведению первых 2010 простых чисел?
Задачу решили:
100
всего попыток:
168
Отрезок шоссе между пунктами А1 и А11 имеет протяженность, равную 56 километрам. Вдоль этого шоссе расположены ещё 9 пунктов: А2, А3, ..., А10 (именно в таком порядке). Любые два соседних участка шоссе (вместе взятых) не длиннее 12 километров. А любые три — не короче 17. Сколько километров составляет расстояние от А2 до А7?
Задачу решили:
137
всего попыток:
169
Встретились три гномика. У каждого на майке написано двузначное натуральное число. Каждый из гномиков заметил, что если в его числе поменять местами цифры, то получится сумма чисел у двух других гномиков. Чему равна сумма чисел у всех трёх гномиков?
Задачу решили:
86
всего попыток:
143
Два самолёта летят прямолинейными курсами с постоянными скоростями. В 12-00 расстояние между ними составляло 200 км, в 12-07 — 150 км, а в 12-21 — 130 км. Сколько км составляло наименьшее расстояние между самолётами?
Задачу решили:
63
всего попыток:
390
Дорожки парка идут вдоль краев двух квадратных газонов с одной общей стороной. Вокруг газонов (каждый вокруг своего) против часовой стрелки гуляют с постоянными скоростями Ватсон и на 20% быстрее него Холмс. Время от времени они встречаются на общей дорожке. Во второй раз они встретились через 10 минут после первого, а в третий — через 10 минут после второго. Через сколько минут они встретятся в 4-й раз?
Задачу решили:
53
всего попыток:
102
Будем называть 2N-значное число (без ведущих нулей) «интересным», если оно делится как на число, составленное из первых N его цифр, так и на число, составленное из последних N его цифр. Например, число 1020 — «интересное», а число 2005 — нет. Пусть f(N) — это количество 2N-значных «интересных» чисел. Найдите f(N); в ответе укажите значение суммы f(1)+f(2)+f(3)+...+f(10).
Задачу решили:
101
всего попыток:
397
Отец в завещании оставил своим пяти сыновьям разного возраста 10 коров. При этом он указал правило, как делить это наследство. А именно, сначала старший сын предлагает свою схему делёжки. Происходит голосование с участием автора. Если большинство отвергает предложенную схему, то автор, не получив ничего, в дальнейшем действии не участвует. Попытка переходит к следующему по старшинству. И так далее. Какое наибольшее число коров сможет получить старший сын? (Каждый голосует исходя из своей личной выгоды и уверен, что так же будут поступать все другие.)
Задачу решили:
91
всего попыток:
221
В цепи 150 звеньев, каждое массой 1 г. Какое наименьшее число звеньев нужно расковать, чтобы из образовавшихся частей (с учётом раскованных звеньев) можно было составить все целочисленные массы от 1 до 150 г? (Масса раскованного звена тоже равна одному грамму.)
Задачу решили:
36
всего попыток:
56
Найдите вероятность того, что n случайно и независимо выбранных на окружности точек лежат на одной полуокружности.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|