img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 89
всего попыток: 339
Задача опубликована: 17.06.09 14:58
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: fedyakov

Перед двумя игроками 4 кучки из спичек: в первой — 11, во второй — 29, в третьей — 37 и в четвёртой — 41 спичка. Каждый игрок своим ходом берёт любое (ненулевое) число спичек из любой кучки по своему выбору — можно взять хоть всю кучку, но брать спички из разных кучек нельзя. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку. Сколько спичек и из какой кучки должен взять первый игрок в начале игры, чтобы обеспечить себе победу при любых ходах второго игрока? В ответе введите произведение количества взятых спичек и номера кучки.

Задачу решили: 198
всего попыток: 755
Задача опубликована: 28.06.09 21:06
Прислал: Rep img
Источник: Международная математическая олимпиада школьн...
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

Какое максимальное количество шаров диаметра 1 можно уложить в коробку размерами 10х10х1?

Задачу решили: 52
всего попыток: 187
Задача опубликована: 02.08.09 13:28
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: fedyakov

Перед двумя игроками 5 кучек из спичек: в первой — 7, во второй — 10, в третьей — 18, в четвёртой — 19 и в пятой — 24 спички. Каждый игрок своим ходом берёт любое (ненулевое) число спичек из одной или двух кучек по своему выбору — например, можно взять только одну спичку, а можно и все спички из двух кучек, но вообще не брать спичек или брать спички из трёх разных кучек нельзя. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку. Сколько спичек и из каких кучек должен взять первый игрок в начале игры, чтобы обеспечить себе победу при любых ходах второго игрока? В ответе введите общее количество взятых спичек.

(Эта игра очень похожа на "Игру в спички II"; единственное отличие — там разрешалось брать спички только из одной кучки, а здесь можно и из двух.)
Задачу решили: 82
всего попыток: 99
Задача опубликована: 16.09.09 08:29
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Два равных прямоугольника (один с синими сторонами, а другой — с красными) ограничивают на плоскости некоторый восьмиугольник.

Найти максимум разности между суммой длин его красных сторон и суммой длин его синих сторон при условии, что диагонали прямоугольников равны 60.

Задачу решили: 63
всего попыток: 178
Задача опубликована: 21.09.09 12:09
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Найдите число всех пар (m,nцелых чисел таких, что 1 ≤ m ≤ 20092009, 1 ≤ n ≤ 20092009 и |m2 + mn − n2| = 1.

Задачу решили: 82
всего попыток: 234
Задача опубликована: 25.09.09 14:36
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: julikV (Юлиан Ваннэ)

Квадрат на плоскости разбит на 25 маленьких одинаковых квадратов, через все вершины которых проходит некоторая ломаная (возможно самопересекающаяся). Каково минимальное число её звеньев?

Задачу решили: 73
всего попыток: 215
Задача опубликована: 30.09.09 08:25
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Сумма n нечётных чисел совпадает с их произведением. Какие значения может принимать n? В ответе введите число возможных значений n, удовлетворяющих неравенству 1 ≤ n ≤ 2009.

Задачу решили: 57
всего попыток: 246
Задача опубликована: 02.10.09 11:41
Прислал: julikV img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: fedyakov

У Вас есть три одинаковых пластмассовых шарика, и Вы хотите выяснить, после броска с какого этажа 119-этажного небоскрёба на них начинают появляться трещины. (Например, если сбросить с 20-го, то трещины появляются, а на 19-м ещё нет.) Чтобы определить, появились ли трещины, нужно выйти на улицу и осмотреть шарик. Прежде чем выйти на улицу, Вы можете сбросить с разных этажей все имеющиеся в наличии нетреснувшие шарики. Разрешается выйти на улицу не более, чем n раз. При каком минимальном значении n ещё возможно гарантированно определить, после броска с какого именно этажа шарики начинают покрываются трещинами. Учтите, что шарик может покрыться трещинами и при падении с первого этажа, а может остаться целым и при падении с последнего.

(См. похожую задачу "Небоскрёб и стеклянные шарики")
+ 4
+ЗАДАЧА 235. 10 из 2009 (Г.А.Гальперин)
  
Задачу решили: 55
всего попыток: 74
Задача опубликована: 06.10.09 14:03
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Loks

Существуют ли 2009 последовательных натуральных чисел, среди которых ровно 10 простых?

Задачу решили: 24
всего попыток: 35
Задача опубликована: 12.10.09 13:41
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: casper

Большой прямоугольник разрезан на конечное число маленьких. (Стороны всех прямоугольников вертикальны или горизонтальны.) Известно, что у каждого маленького прямоугольника длина хотя бы одной стороны — целое число. Верно ли, что тогда и у большого прямоугольника хотя бы одна сторона имеет целую длину? (Если верно — доказать, если нет — привести пример.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.