Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
89
всего попыток:
327
Какое минимальное число различных решений, лежащих на отрезке [−π,π], может иметь тригонометрическое уравнение a cos(9x) + b sin(16x) + c cos(25x) + d sin(36x) = 0? (Решения данного уравнения зависят от значений его коэффициентов a, b, c и d.)
Задачу решили:
180
всего попыток:
652
В круглый пирог диаметра 35 см запечён металлический рубль диаметра 2 см. На какое минимальное число кусков нужно разрезать пирог, чтобы гарантированно найти монету, если известно, что она расположена в пироге горизонтально? (Разрешается делать только прямолинейные разрезы. Монета считается обнаруженной, если она попадает под нож.)
Задачу решили:
161
всего попыток:
594
Из какого наименьшего числа квадратов, среди которых нет двух равных, можно сложить прямоугольник? (Квадратов должно быть больше одного.) Если Вы считаете, что нельзя, то введите 0.
Задачу решили:
76
всего попыток:
262
В далёкой стране к власти пришёл военный диктатор, который хочет стать президентом, победив на демократических выборах, организованных по следующей системе. В первом туре все избиратели объединяются в равные по численности группы, и от каждой группы большинством голосов избирается представитель для голосования во втором туре. Во втором туре все избранные в первом туре представители объединяются в равные группы и в каждой группе выбирают её представителя для голосования в третьем туре. И так далее: в последнем туре представители избирают президента. В стране ровно 5 760 000 избирателей, среди которых n человек безоговорочно поддерживают диктатора (поскольку состоят в регулярной армии). При каком минимальном n можно так организовать выборы, чтобы диктатор гарантированно был избран президентом? (При равенстве голосов в следующий тур проходят независимые кандидаты.) Диктатор сам заранее определяет количество туров и сколько представителей будут содержать группы в каждом туре — это число может меняться от тура к туру; он также может распределить своих сторонников по группам так, как ему выгодно. Любой избиратель может голосовать за себя, а сам диктатор входит в число n своих сторонников.
Задачу решили:
198
всего попыток:
755
Какое максимальное количество шаров диаметра 1 можно уложить в коробку размерами 10х10х1?
Задачу решили:
89
всего попыток:
173
Рассмотрим десятичные записи степеней двойки: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096,... и составим последовательность, состоящую из их первых цифр: 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4... Каждая цифра появляется среди первых n членов полученной последовательности с некоторой частотой, зависящей от n. Например, при n=12 частота появления 1 равна 1/4, 2 — 1/4, 3 — 1/12, 4 — 1/6, 5 — 1/12, 6 — 1/12, 8 — 1/12, а цифры 7 и 9 вообще не встречаются. Найдите число, обратное к предельной (при n→∞) частоте появления семёрки. Ответ округлите до ближайшего целого числа.
Задачу решили:
51
всего попыток:
250
Гусеница сидит внутри закрытой коробки высотой 24 см посередине её вертикального ребра. Посередине самого дальнего от гусеницы вертикального ребра в коробке есть маленькое отверстие, через которое гусеница хочет выбраться на свободу. Известно, что к отверстию ведут n различных кратчайших путей равной длины. При каких длине и ширине коробки значение n максимально и чему оно равно? В ответе укажите сумму длин в см всех n кратчайших путей гусеницы до отверстия при наибольшем значении n.
Задачу решили:
82
всего попыток:
99
Два равных прямоугольника (один с синими сторонами, а другой — с красными) ограничивают на плоскости некоторый восьмиугольник. Найти максимум разности между суммой длин его красных сторон и суммой длин его синих сторон при условии, что диагонали прямоугольников равны 60.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|