img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: putout добавил решение задачи "Три точки на прямой" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 93
всего попыток: 217
Задача опубликована: 02.12.10 08:00
Прислал: Busy_Beaver img
Источник: Putnam Competition
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: emm76

Чему равна последняя цифра числа [1020000/(10100+3)], где [x] означает "целая часть числа x"?

Задачу решили: 49
всего попыток: 85
Задача опубликована: 08.12.10 08:00
Прислал: TALMON img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Найти минимальное натуральное число n>2010, удовлетворяющее условию: в любом множестве из n целых чисел существует подмножество из 2010 чисел, сумма которых делится на 2010.

Задачу решили: 50
всего попыток: 142
Задача опубликована: 11.01.11 08:00
Прислал: demiurgos img
Источник: Всероссийская олимпиада
Вес: 1
сложность: 4 img
баллы: 100

Две треугольные пирамиды центрально симметричны относительно общей вершины, объём каждой пирамиды — 2010. Найдите объём фигуры, состоящей из середин всех отрезков, концы которых принадлежит разным пирамидам.

Задачу решили: 20
всего попыток: 132
Задача опубликована: 24.01.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

Точка A лежит вне прямой a, на которой отмечены 2011 различных точек. Известно, что расстояние от точки A до прямой a, а также между любыми двумя из всех упомянутых 2012 точек является целым числом. Найдите наименьшее возможное расстояние между прямой a и точкой A.

Задачу решили: 48
всего попыток: 111
Задача опубликована: 14.02.11 08:00
Прислал: Busy_Beaver img
Источник: Putnam Competition
Вес: 1
сложность: 4 img
баллы: 100
Лучшее решение: zhekas (Евгений Сыромолотов)

Петя подбрасывает честную игральную кость (каждое из чисел 1, 2, 3, 4, 5, 6 выпадает с вероятностью 1/6) несколько раз подряд, пока суммарное количество очков не станет равным n или не превысит n. Пусть P(n) — вероятность того, что после последнего броска суммарное число очков будет равно n. Найти предел P(n), когда n стремится к бесконечности. (Ответ представьте в виде несократимой дроби p/q, где p и q — натуральные числа.)

Задачу решили: 36
всего попыток: 159
Задача опубликована: 25.02.11 08:00
Прислал: ZARIF img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: Shamil

Натуральные числа a и b таковы, что число — целое и . Каков максимально возможный наибольший общий делитель чисел a и b?

(Задача отредактирована, как предложил Vkorsukov.)
Задачу решили: 25
всего попыток: 42
Задача опубликована: 28.02.11 08:00
Прислал: Busy_Beaver img
Источник: Putnam Competition
Вес: 1
сложность: 4 img
баллы: 100

Пусть b — натуральное число, большее единицы. Для каждого натурального числа n определим d(n) как количество цифр числа n, записанного в системе счисления с основанием b. Определим последовательность f(n) следующим образом: f(1)=1, f(2)=2, ..., f(n) = n·f(d(n)). При каких значениях b ряд сходится? В ответе укажите сумму всех таких значений.

Задачу решили: 49
всего попыток: 63
Задача опубликована: 01.04.11 08:00
Прислал: Busy_Beaver img
Источник: Международная олимпиада
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Сколько существует пар целых чисел (m>2, n>2), для каждой из которых существует бесконечно много таких натуральных чисел k, что (km+k−1) делится на (kn+k2−1)?

Задачу решили: 32
всего попыток: 203
Задача опубликована: 13.10.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 4 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Timur

Сколько существует точек с целочисленными координатами, лежащих на кривой x2−3y2=1 и расположенных внутри круга радиуса 20112011 с центром в начале координат?

Задачу решили: 45
всего попыток: 369
Задача опубликована: 05.12.11 08:00
Прислал: Volga img
Вес: 1
сложность: 4 img
баллы: 100
Лучшее решение: levvol

В трёхмерном пространстве рассмотрим все такие треугольники, что координаты их вершин задаются целыми числами из набора [0,1,2,3,4]. Сколько всего среди этих треугольников равносторонних?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.