img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 116
всего попыток: 395
Задача опубликована: 02.04.09 15:13
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

На окружности отмечена точка, из которой по часовой стрелке циркулем делается засечка. Из полученной точки в том же направлении тем же радиусом делается вторая засечка, и так повторяется 2009 раз. После этого окружность разрезается во всех 2009 засечках, и получается 2009 дуг. Какое максимально возможное число дуг различной длины может при этом получиться?

+ 40
+ЗАДАЧА 37. Аэродромы (Г.А.Гальперин, переработка demiurgos)
  
Задачу решили: 132
всего попыток: 436
Задача опубликована: 04.04.09 21:16
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Crazy_666

В некоторой стране 25 аэродромов. С каждого из них вылетел самолёт и приземлился на самом удалённом от места старта аэродроме. В результате все 25 самолётов оказались на n аэродромах. Какие значения из промежутка от 1 до 25 не может принимать n? В ответе укажите сумму найденных (невозможных) значений.

Землю можно считать плоской, а маршруты — прямыми. Все расстояния между аэродромами предполагаются различными. Число n зависит только от взаимного расположения аэродромов.

Задачу решили: 139
всего попыток: 891
Задача опубликована: 09.04.09 13:04
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Среди нескольких компьютерных чипов есть два поддельных, которые обладают повышенной радиоактивностью, а в остальном не отличаются от настоящих. В имеющийся прибор можно засунуть любое количество чипов и узнать, есть ли среди них радиоактивный (но нельзя понять, сколько именно — один или два). Каково максимальное число чипов, среди которых можно гарантировать обнаружение обоих поддельных за 7 проверок?

Задачу решили: 96
всего попыток: 315
Задача опубликована: 01.04.09 11:43
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

В соревнованиях по десятиборью участвуют 1024 человека. Для каждого спортсмена известна его сила в каждом из видов программы, причём силы разных спортсменов различны. Соревнования проходят следующим образом: сначала все спортсмены участвуют в первом виде программы и лучшая половина из них выходит в следующий круг. Эта половина принимает участие в следующем виде и половина из них выходит в следующий круг, и т.д., пока в 10-м виде программы не будет определен победитель. Назовем спортсмена "заведомым аутсайдером", если при любом порядке видов спорта в программе он не может стать победителем. Каково минимально возможное число заведомых аутсайдеров?

Задачу решили: 110
всего попыток: 781
Задача опубликована: 27.04.09 22:18
Прислал: demiurgos img
Источник: по мотивам задачи "Дядька Черномор" И.Н.Серге...
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100

Витязи накануне хорошо отдохнули и перед выходом из моря построились не по росту. Перестраиваться они не соглашаются, но их морской дядька может приказать некоторым из них выйти из строя так, чтобы оставшиеся стояли по росту либо в порядке убывания, либо в порядке возрастания. Какое максимальное число витязей он сможет вывести из моря при их наихудшей для него (и наилучшей для них) первоначальной расстановке? Витязи все разного роста, а всего их, как известно, 30.

Задачу решили: 84
всего попыток: 547
Задача опубликована: 14.05.09 18:10
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Сначала напишем на доске две единицы: 1 1. На втором шаге напишем между ними их сумму и получим: 1 2 1. На каждом следующем шаге будем вписывать между всеми соседними числами, написанными на предыдущих шагах, их суммы. Получим: 1 3 2 3 1, 1 4 3 5 2 5 3 4 1, 1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1,... Сколько раз мы напишем число 2009, если будем продолжать эту процедуру до бесконечности?

Задачу решили: 108
всего попыток: 494
Задача опубликована: 16.05.09 10:19
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада школьнико...
Вес: 1
сложность: 5 img
класс: 8-10 img
баллы: 100
Лучшее решение: lg

В центре круглой арены сидит лиса, а на её краю — заяц. Лиса хочет догнать зайца, который мечтает от неё убежать. Лиса может бегать по всей арене, а заяц лишь по её краю. Оба они могут двигаться с одной и той же максимальной скоростью, позволяющей им обежать всю арену по её краю за одну минуту. Через сколько секунд лиса догонит зайца, если их стратегии оптимальны? (Если Вы считаете, что лиса не сможет догнать зайца, то введите 0.)

Пояснения: лиса — это точка на круге, а заяц — на его окружности; на ускорение ограничений нет: желаемую скорость они способны набирать мгновенно.

 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.