Лента событий:
TALMON предложил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
4
всего попыток:
5
На рисунке изображён пример полиомино - фигуры, состоящей из какого-то количества смежных клеток размером 1x1 на листе тетрадки в клеточку: На том же рисунке также изображён квадрат размером 8x8, в котором данное полиомино помещается целиком. В этом примере полиомино занимает на листе тетрадки 9 строк и 9 столбцов, а стороны большого квадрата наклонены к сторонам клеточек под углами с тангенсами -3/5 и 5/3. На рисунке также выделены вершины полиомино, лежащие на сторонах большого квадрата. Нас интересует количество различных (не конгруэнтных) полиомино, обладающих следующими двумя свойствами: Разобъём все полиомино, обладающие двумя указанными свойствами, по количествам строк и столбцов, которые они занимают на листе тетрадки. Обозначим: В ответ введите эти 5 чисел подряд, без пробелов, слева направо: n1n2n3n4n5
Задачу решили:
24
всего попыток:
59
На рисунке изображены правильный 6-угольник со стороной 7 и ломаная из 14-и звеньев, длины которых составляют арифметическую прогрессию: 1, 2, 3, ... Углы между соседними звеньями – 60°. Ломаная – несамопересекающаяся. Она соединяет середины двух противоположных сторон 6-угольника. Однако, существуют и другие ломаные, обладающие всеми этими свойствами, кроме количество звеньев. Найдите минимально возможное количество звеньев. Замечание. Задача кажется очень похожей на задачу № 2215, но на самом деле это не совсем так. Вместе с тем, дальнейшее продолжение "сериала" не планируется.
(Я задумал эти две задачи как забавы ("головоломки") типа разрезания-склеивания. Но zmerch показал очень приличный АЛГОРИТМ их решения, и я решил "поднять их ранг".)
Задачу решили:
14
всего попыток:
16
Рассмотрим множество чисел M = {1, 2, 3, ..., 214 - 1}. Определим на этом множестве операцию «циклического сложения»: Например: 16380 ⊕ 7 = [(16380+7) / 214] + (16380+7) mod 214 = 1 + 3 = 4 Докажите, что эта операция определяет группу на множестве M и найдите её нейтральный элемент? Введите его в двоичной системе счисления.
Задачу решили:
4
всего попыток:
47
На рисунке изображён пример полиомино - фигуры, состоящей из какого-то количества смежных клеток размером 1x1 на листе тетрадки в клеточку: На том же рисунке также изображён квадрат размером 9x9, в котором данное полиомино помещается целиком. В этом примере полиомино занимает на листе тетрадки 10 строк и 11 столбцов, а стороны большого квадрата наклонены к сторонам клеточек под углами с тангенсами 2 и -1/2. На рисунке также выделены вершины полиомино, лежащие на сторонах большого квадрата. Нас интересует количество различных (не конгруэнтных) полиомино, обладающих следующими двумя свойствами:
Разобъём все полиомино, обладающие двумя указанными свойствами, по количествам строк и столбцов, которые они занимают на листе тетрадки. Обозначим: В ответ введите эти 5 чисел подряд, без пробелов, слева направо: n1n2n3n4n5
Задачу решили:
21
всего попыток:
36
Квадрат имеет сторону длины n, n∈N. Все стороны квадрата разделены точками на единичные отрезки. В этот квадрат вписаны n-1 квадратов, все вершины которых находятся в точках деления. При этом исходный квадрат оказался разделен на части. Найдите соотношение плошади полученной в центре части к площади исходного квадрата, когда n стремится к бесконечности. В ответе укажите целую часть этого соотношения, умноженного на 10000. На рисунке приведен квадрат со стороной 40, в который вписаны 39 меньших квадратов.
Задачу решили:
13
всего попыток:
29
Правильный пятиугольник имеет сторону длины n, n∈N. Все стороны пятиугольника разделены точками на единичные отрезки. В этот пятиугольник вписаны n-1 правильных пятиугольников, все вершины которых находятся в точках деления. На рисунке приведен правильный пятиугольник со стороной 7, в который вписаны 6 меньших правильных пятиугольников. Найдите количество таких n (1<n<200), для которых количество полученных частей НЕ равно 5*(n-1)2+1.
Задачу решили:
12
всего попыток:
21
Множество A={a,b,c} содержит 3 элемента. Его запись занимает 7 символов. Множество B это множество всех подмножеств множества A. Его запись: {{},{a},{b},{a,b},{c},{a,c},{b,c},{a,b,c}} занимает 42 символа. Множество C это множество всех подмножеств множества B. Сколько символов занимает запись множества C?
Задачу решили:
31
всего попыток:
34
При каком максимальном целом k ряд 1k/7 + 2k/7 + 3k/7 + . . . сходится?
Задачу решили:
14
всего попыток:
20
Найдите площадь василька: Контур цветка задаётся в полярных координатах формулой ρ=f(φ), где f(φ) – сумма каких-то трёх членов тригонометрического ряда Фурье (https://ru.wikipedia.org/wiki/Тригонометрический_ряд_Фурье) Площадь василька умножьте на 20000 и введите в ответ целую часть результата.
Задачу решили:
11
всего попыток:
14
Кривая дракона – это рекурсивная ломаная, которая, начиная с единичного отрезка, за каждую итерацию удваивает свою длину, путем добавления к себе предыдущей части, повернутой на 90°. Рассмотрим такой вариант построения этой ломаной, когда направления поворотов задаются строкой из нулей и единиц: ноль задаёт поворот по часовой стрелке, а единица – поворот против часовой стрелки. На рисунке изображена ломаная, заданная строкой 111010. Эта ломаная образует 15 одноклеточных квадратиков. Рассмотрим ломаные, заданные всевозможными строками из 6-и нулей и единиц. Найдите сумму всех различных количеств квадратиков, которые они образуют.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|