img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 4
всего попыток: 47
Задача опубликована: 12.09.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
баллы: 100

На рисунке изображён пример полиомино - фигуры, состоящей из какого-то количества смежных клеток размером 1x1 на листе тетрадки в клеточку:

Полиомино в квадрате 9x9

На том же рисунке также изображён квадрат размером 9x9, в котором данное полиомино помещается целиком.

В этом примере полиомино занимает на листе тетрадки 10 строк и 11 столбцов, а стороны большого квадрата наклонены к сторонам клеточек под углами с тангенсами 2 и -1/2. На рисунке также выделены вершины полиомино, лежащие на сторонах большого квадрата.

Нас интересует количество различных (не конгруэнтных) полиомино, обладающих следующими двумя свойствами:

  1. Для полиомино существует квадрат 9x9, в котором оно помещается целиком.
  2. Полиомино является «максимальным»: Если к нему добавить хотя бы одну клетку, то уже не существует квадрат 9x9, в котором оно будет помещаться целиком.

Разобъём все полиомино, обладающие двумя указанными свойствами, по количествам строк и столбцов, которые они занимают на листе тетрадки. Обозначим:
n1 – Количество полиомино, занимающих 9 строк и 9 столбцов;
n2 – Количество полиомино, занимающих 9 строк и 10 столбцов (или наоборот);
n3 – Количество полиомино, занимающих 10 строк и 10 столбцов;
n4 – Количество полиомино, занимающих 10 строк и 11 столбцов (или наоборот);
n5 - Количество полиомино, занимающих 11 строк и 11 столбцов.

В ответ введите эти 5 чисел подряд, без пробелов, слева направо: n1n2n3n4n5

Задачу решили: 21
всего попыток: 36
Задача опубликована: 17.10.22 08:00
Прислал: TALMON img
Источник: По предложению коллеги Sam777e, по мотивам за...
Вес: 1
сложность: 1 img
баллы: 100
Темы: геометрияimg
Лучшее решение: avilow (Николай Авилов)

Квадрат имеет сторону длины n, n∈N. Все стороны квадрата разделены точками на единичные отрезки. В этот квадрат вписаны n-1 квадратов, все вершины которых находятся в точках деления. При этом исходный квадрат оказался разделен на части. Найдите соотношение плошади полученной в центре части к площади исходного квадрата, когда n стремится к бесконечности. В ответе укажите целую часть этого соотношения, умноженного на 10000.

Квадраты в квадрате-2

На рисунке приведен квадрат со стороной 40, в который вписаны 39 меньших квадратов.

Задачу решили: 13
всего попыток: 29
Задача опубликована: 09.11.22 08:00
Прислал: TALMON img
Источник: С. Шеннон и С. Водовоз
Вес: 1
сложность: 1 img
баллы: 100
Темы: геометрияimg

Правильный пятиугольник имеет сторону длины n, n∈N. Все стороны пятиугольника разделены точками на единичные отрезки. В этот пятиугольник вписаны n-1 правильных пятиугольников, все вершины которых находятся в точках деления.
При этом исходный пятиугольник оказался разделен на части.

Пятиугольники в пятиугольнике

На рисунке приведен правильный пятиугольник со стороной 7, в который вписаны 6 меньших правильных пятиугольников.

Найдите количество таких n (1<n<200), для которых количество полученных частей НЕ равно 5*(n-1)2+1.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.