Лента событий:
Sam777e решил задачу "Параллелограмм и две биссектрисы - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
30
всего попыток:
39
В числовом ребусе:
Задачу решили:
32
всего попыток:
67
В числовом ребусе Д*Е*Н*Ь = Т*А*Т*Ь*Я*Н*Ы одинаковым буквам соответствуют одинаковые цифры отличные от нуля, разным – разные, звёздочки – знаки умножения. Чему равно второе в порядке увеличения значение суммы Д+Е+Н+Ь?
Задачу решили:
33
всего попыток:
34
Найдите натуральное число, равное целой части произведения двухсот и арксинуса разности двух его некоторых цифр.
Задачу решили:
29
всего попыток:
31
В числовом ребусе
Задачу решили:
22
всего попыток:
24
В правильной треугольной призме ABCA1B1C1 на ребрах AC и A1C1 отмечены соответственно точки M и K так, что |AM|:|MC| = 11/5, |A1K|: |KC1|= 3/5, точка N – середина ребра BC. Найти AA1, если AA1 равно расстоянию от точки C1 до плоскости MNK и |AB| = 16.
Задачу решили:
25
всего попыток:
27
Параллелограмм разделён на четыре треугольника так, как показано на рисунке. Площади красного, желтого, зелёного треугольников составляют соответственно последовательные натуральные числа. Чему равна площадь красного треугольника, если площадь оранжевого равна 2584?
Задачу решили:
20
всего попыток:
23
Параллелограмм разбивается на четыре треугольника с целочисленными площадями так, как показано на рисунке. Найти площадь внутреннего треугольника шестого по счёту по величине площади параллелограмма, для которого выполнятся эти условия, считая первым параллелограмм с площадями треугольников 24,25,26,55.
Задачу решили:
27
всего попыток:
30
Ох, уж эти мыши: белый и серый. Какие только пакости ни делали коту Леопольду. Однажды на заборе написали: КОШКА + МЫШКА = ДРУЖБА, МЫШКА > КОШКА Чему равно число ДРУЖБА, если разным буквам соответствуют разные цифры, кроме Ш = Ж. Памяти Вячеслава Михайловича Назарука посвящается.
Задачу решили:
12
всего попыток:
14
Квадрат разделён отрезками на четыре треугольника целочисленной площади. Площади трёх из них образуют арифметическую прогрессию с разностью 1. Сколько существует таких квадратов с целочисленной стороной?
Задачу решили:
9
всего попыток:
12
Квадрат разделён отрезками на четыре треугольника целочисленной площади. Площади a, b, c трёх из них образуют арифметическую прогрессию с разностью 1. Найти наибольшую площадь d внутреннего треугольника такую, что d – точный квадрат.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|