img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 17
всего попыток: 18
Задача опубликована: 24.07.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

На каждой грани кубика написано число. При одновременном бросании двух кубиков кубик A выигрывает у кубика B, если число, выпавшее на кубике A больше числа, выпавшего на кубике B. Будем говорить, что кубик A сильнее кубика B, если кубик A чаще выигрывает у кубика B и записывать A > B.

Можно ли на гранях пяти кубиков расставить числа от 1 до 30 (каждое по одному разу) так, чтобы оказалось: Зеленый кубик > Черный кубик > Оранжевый кубик > Желтый кубик > Белый кубик > Зеленый кубик ?

Нетранзитивные кубики

На приведенном примере числа на кубиках расставлены случайным образом.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.