Лента событий:
fortpost решил задачу "Плохое место" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
13
всего попыток:
52
Ребра правильного тетраэдра поделены на 6 равных частей. Через все точки деления провели все возможные плоскости параллельные граням тетраэдра. На какое количество частей эти плоскости разбивают пространство?
Задачу решили:
26
всего попыток:
79
Из спичек сложили правильный шестиугольник, изображенный на рисунке. В нем спрятаны контуры нескольких правильных шестиугольников. Какое наименьшее количество спичек нужно убрать, чтобы контуры всех правильных шестиугольников оказались разрушенными?
Задачу решили:
37
всего попыток:
72
Прямая пересекает треугольник со сторонами 5, 7 и 9 так, что она делит пополам и его периметр, и площадь. В каком отношении она делит большую сторону треугольника? В ответе укажите отношение меньшей части к большей.
Задачу решили:
43
всего попыток:
67
Натуральное n-значное число равно n-ой степени суммы его цифр. Найтите все такие числа, в ответе укажите их сумму.
Задачу решили:
37
всего попыток:
60
В стандартном комплекте домино 28 костяшек с числами от 0 до 6. Прикладывая костяшки этого комплекта друг к другу по правилам домино, можно сложить фигуру, изображенную на рисунке. При этом можно добиться того, чтобы сумма всех чисел в каждой из пяти рамок была одной и той же. Чему равна эта сумма?
Задачу решили:
51
всего попыток:
68
Книга сшита из 12 одинаковых тетрадей, каждая тетрадь - из нескольких двойных листов, вложенных друг в друга. Все страницы книги пронумерованы, начиная с 1. Сумма номеров четырех страниц одного из двойных листов четвертой тетради равна 338. Сколько страниц в этой книге?
Задачу решили:
25
всего попыток:
138
На шахматном поле существует всего три замкнутых маршрута коня длиной 4 хода, изображенных на рисунке. Сколько существует различных замкнутых маршрутов коня длиной 6 ходов?
Задачу решили:
67
всего попыток:
77
Решите уравнение 1+2+3+...+n=1*2*3*...*m, где n и m неравные натуральные числа. В ответе укажите произведение nm.
Задачу решили:
47
всего попыток:
90
На сторонах прямоугольного треугольника вне его построены три квадрата. Стороны квадрата ABCD параллельны катетам треугольника и делят площадь каждого из трёх квадратов на две равные части. Найдите сторону квадрата ABCD, если катеты данного треугольника равны 18 и 126.
Задачу решили:
26
всего попыток:
96
Десять пронумерованных фишек расположены в форме треугольника. За один ход любые три соседние фишки можно повернуть вокруг их общего центра на угол 120° так, чтобы они циклически переместились, причем, как по часовой стрелке, так и против неё. Здесь всего девять троек фишек, которые можно поворачивать. За какое, наименьшее число ходов можно из данного слева расположения фишек получить расположение, изображенное справа?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|