img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: fortpost решил задачу "Объём тела" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 11
всего попыток: 35
Задача опубликована: 19.06.24 08:00
Прислал: avilow img
Источник: По мотивам задачи 2664
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Имеются двусторонняя линейка и окружность, радиус которой больше ширины линейки. За одну операцию можно либо провести прямую, либо две параллельные прямые, используя обе стороны линейки. За какое минимальное количество операций можно найти центр окружности?

Задачу решили: 16
всего попыток: 21
Задача опубликована: 05.07.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

На плоскости через точку А проведено 29 прямых, через точку B проведено 34 прямых. Каждая прямая первого пучка пересекают каждую прямую второго пучка, и наоборот. Прямых, принадлежащих обоим пучкам, нет. На сколько частей делят плоскость все эти прямые?

Например, на рисунке две прямые пучка А и три прямые пучка B делят плоскость на 15 частей.

Два пучка прямых

Задачу решили: 10
всего попыток: 14
Задача опубликована: 29.07.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

В бумажном квадрате 7х7 на рисунке вырезан меньший квадрат так, что его вершины находятся в узлах решетки.

Дырявый квадрат

Разрежьте эту фигуру на несколько частей и переложите их так, чтобы получился квадрат 7х7 с квадратной дырой в центре, причем стороны квадратной дыры были параллельны сторонам исходного квадрата. Разрезы можно делать любой формы. В ответе укажите наименьшее число частей разрезания.

Задачу решили: 20
всего попыток: 28
Задача опубликована: 06.09.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Девочка пронумеровала черные клетки шахматной доски 8х8 числами от 1 до 32 в натуральном порядке так, как показано на рисунке.

Шахматная доска и квадраты 2х2

Мальчик собирается пронумеровать числами от 1 до 32 белые клетки этой доски так, чтобы суммы четырех чисел в любом квадрате 2х2 оказались равными. Сколькими различными способами мальчик сможет это сделать? В ответе укажите сумму всех чисел, расположенных на «белой» диагонали всех возможных решений (эти клетки отмечены звездочками).

Задачу решили: 13
всего попыток: 27
Задача опубликована: 14.10.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: makar243 (Сулейман Макаренко)

25 точек расположены в узлах решетки в форме квадрата (рис. слева).

Ломаные маршруты

Сколько симметричных маршрутов можно проложить из точки A в точку B по линиям решетки так, чтобы каждый маршрут проходил через все точки и не пересекал себя? На рисунке справа показаны два различных симметричных маршрута.

Задачу решили: 11
всего попыток: 25
Задача опубликована: 23.12.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Kf_GoldFish

21 точка расположена в узлах решетки в форме равностороннего треугольника (рис. слева). Сколько замкнутых маршрутов, обладающих поворотной симметрией 3-го порядка, можно проложить по линиям решетки так, чтобы каждый маршрут проходил через все точки и не пересекал себя? Например, на рисунке справа показаны два различных симметричных маршрута на треугольном поле меньшего размера.

Ломаные маршруты - 2

Задачу решили: 14
всего попыток: 21
Задача опубликована: 14.03.25 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Lec

Диагонали правильного 12-угольника разбивают его на части, среди которых есть треугольники и четырехугольники. Найдите отношение числа треугольников к числу четырехугольников.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.