Лента событий:
DOMASH предложил задачу "Дырявый квадрат-4" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
44
всего попыток:
47
Бесконечная последовательность квадратов со сторонами 1, 2, 3, ... через диагональные вершины "нанизаны" на ось Оy так, как показано на рисунке. Докажите, что все остальные вершины этих квадратов лежат на некоторой параболе, и выясните, какую часть внутренней области этой параболы занимают квадраты.
Задачу решили:
17
всего попыток:
96
Одно из боковых ребер правильной шестиугольной призмы совпадает с диагональю куба, а противоположное ему ребро призмы содержит вершину куба. Найдите объем общей части этих тел, если ребро куба равно 1.
Задачу решили:
45
всего попыток:
50
Найдите наибольшее значение определителя матрицы четвертого порядка, у которой на главной диагонали записаны числа 1, 2, 3 и 4, а все остальные числа одинаковы. Определитель изображен на рисунке.
Задачу решили:
32
всего попыток:
49
Дан треугольник A1A2A3 со сторонами A1A2=21, A2A3=17, A1A3=10. Воробей вначале сел в точку A4 пересечения медиан треугольника A1A2A3, затем прыгнул в точку A5 пересечения медиан треугольника A2A3A4, затем прыгнул в точку A6 пересечения медиан треугольника A3A4A5, и т.д. Прыгая так бесконечно долго, воробей стремится к некоторой точке A. Найдите сумму квадратов расстояний от точки A до всех вершин треугольника A1A2A3.
Задачу решили:
26
всего попыток:
63
Бабушка к Пасхе покрасила яйца: 10 красных, 10 желтых и 10 розовых. Первой к ней в гости пришла внучка и случайным образом взяла три яйца. Затем к ней в гости пришел внук и тоже случайным образом взял три яйца. Какова вероятность того, что внук взял яйца трех различных цветов?
Задачу решили:
27
всего попыток:
80
В кубе ABCDA1B1C1D1 с ребром 6 проведен отрезок, соединяющий вершину A куба с центром грани A1B1C1D1. Этот отрезок начинает непрерывно «скользит» своими концами по двум скрещивающимся диагоналям AC и B1D1 противоположных граней куба, не меняя своей длины. Двигаясь таким образом, отрезок задает линейчатую поверхность, изображенную на рисунке. Объём тела, ограниченного этой поверхностью, будет иметь вид kπ. В ответе укажите числовой множитель k.
Задачу решили:
25
всего попыток:
88
При некоторых значениях k на синусоиде y= ksinx можно расположить квадрат, все вершины которого лежат на синусоиде, а его центр совпадает с началом координат. Один из квадратов изображен на рисунке. Сколько таких квадратов существует при k =14?
Задачу решили:
15
всего попыток:
48
Любитель кубика Рубика снял все 54 наклейки с кубика 3х3х3 и переклеил их вновь в случайном порядке. Какова вероятность собрать такой кубик Рубика? Собранным считается кубик, у которого все грани одного цвета. В качестве ответа введите число из первых трёх цифр вероятности, опуская начальные нули. Например, если вероятность равна 0,00040756…, то в ответ вносится число 407.
Задачу решили:
24
всего попыток:
51
На рисунке изображен октаэдр, вписанный в куб. Две его вершины О1 и О2 лежат в центрах противоположных граней куба, а вершины A, B, C и D – середины ребер куба, перпендикулярных этим граням. У куба три пары противоположных граней, поэтому в него можно вписать таким образом три октаэдра. Какую часть куба составляет объем общей части этих трех октаэдров.
Задачу решили:
20
всего попыток:
32
В куб ABCDA1B1C1D1 вписан правильный тетраэдр D1AB1C. Куб, вместе c тетраэдром, вращается вокруг диагонали BD1 куба. При этом образуются два тела вращения: одно задается вращением куба, другое – вращением тетраэдра. Найдите объёмы этих двух тел вращения, и в ответе укажите отношение меньшего объёма к большему.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|