Лента событий:
TALMON предложил задачу "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
47
всего попыток:
90
На сторонах прямоугольного треугольника вне его построены три квадрата. Стороны квадрата ABCD параллельны катетам треугольника и делят площадь каждого из трёх квадратов на две равные части. Найдите сторону квадрата ABCD, если катеты данного треугольника равны 18 и 126.
Задачу решили:
53
всего попыток:
72
Ёлочка, изображенная на рисунке, получается из квадрата в результате бесконечного процесса следующим образом: квадрат по диагонали разрезается на два треугольника, один из них ложится в основание ёлочки, второй разрезается на два равных треугольника, один из них идет на построение ёлочки, второй разрезается на два равных треугольника, и так строится постоянно растущая ёлочка. Найдите величину угла АЕС. Ответ выразите в градусах, округлив до ближайшего целого числа.
Задачу решили:
24
всего попыток:
164
Гипотрохоида - плоская кривая, задаваемая фиксированной точкой круга, который катится без скольжения по внутренней стороне другой окружности. Гипротрохоиды можно рисовать с помощью спирографа. На рисунке слева изображено кольцо и диск спирографа. Чтобы диск при движении не скользил, на нем и на внутренней окружности кольца сделаны зубья. Карандаш, вставленный в одно из отверстий диска, при вращении оставляет на бумаге след - гипотрохоиду, здесь незаконченная красная линия. На рисунке справа изображена одна из гипотрохоид. Она нарисована другой парой спирографа, на внутренней окружности кольца которого имеется 96 зубьев. Сколько зубьев на диске?
Задачу решили:
32
всего попыток:
49
Дан треугольник A1A2A3 со сторонами A1A2=21, A2A3=17, A1A3=10. Воробей вначале сел в точку A4 пересечения медиан треугольника A1A2A3, затем прыгнул в точку A5 пересечения медиан треугольника A2A3A4, затем прыгнул в точку A6 пересечения медиан треугольника A3A4A5, и т.д. Прыгая так бесконечно долго, воробей стремится к некоторой точке A. Найдите сумму квадратов расстояний от точки A до всех вершин треугольника A1A2A3.
Задачу решили:
21
всего попыток:
70
Если бумажную полосу единичной ширины завязать простым узлом так, чтобы он стал плоским, то узел примет форму правильного пятиугольника (рис. слева). Пятиугольник на рисунке справа получен из бумажной полосы завязыванием пяти таких узлов. Чему равна длина полосы, если в сложенном виде её противоположные концы совпадают с отрезком АВ. Ответ округлите до целого числа.
Задачу решили:
38
всего попыток:
51
Четыре вершины правильного шестиугольника лежат на параболе у=х2, сторона шестиугольника, соединяющая оставшиеся две его вершины, пересекает ось Оу в точке А (смотри рисунок). Найдите ординату точки А.
Задачу решили:
18
всего попыток:
35
На плоскости в узлах правильной треугольной решетки расположены точки так, что их множество образует правильный шестиугольник. На стороне этого шестиугольника 10 точек (рис. для 4 точек). Сколько существует правильных шестиугольников, которые определяются эти точки как их вершины?
Задачу решили:
25
всего попыток:
54
В параллелограмм вписана елочка так, как показано на рисунке. Площади трех частей параллелограмма равны 24, 25 и 26. Найдите площадь елочки.
Задачу решили:
12
всего попыток:
16
Гипотрохоида — плоская кривая, образуемая фиксированной точкой, находящейся на фиксированной радиальной прямой окружности, катящейся по внутренней стороне неподвижной окружности. Гипотрохоида задается тремя параметрами: R — радиус неподвижной окружности, r — радиус вращающейся окружности, d — расстояние от фиксированной точки до центра вращающейся окружности. На рисунке приведена гипотрохоида с параметрами R=11, r=7, d=11, которая делит плоскость на 35 частей. На сколько частей разделит плоскость гипотрохоида с параметрами R = p101, r = p100, d = p101, где p100 и p101 — простые числа с номерами 100 и 101?
Задачу решили:
17
всего попыток:
24
Круги радиуса 1 наложены друг на друга так, что их границы образуют квадратную кружевную салфетку, изображенную на рисунке, причем центры кругов расположены в узлах квадратной решетки. Найдите площадь фигуры, являющейся объединением 322 таких кругов. В ответе укажите целую часть этой площади (антье).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|