![]()
Лента событий:
fortpost решил задачу "Арифметическая прогрессия в хвосте квадрата - 2" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
29
Вершины четырехугольника ABCD лежат на параболе y = x2, диагонали AC и BD перпендикулярны. Известны абсциссы трех его вершин: xA = 23, xB = –24, xC = – 25. Найдите абсциссу вершины D этого четырехугольника. ![]()
Задачу решили:
22
всего попыток:
52
На полке стоит 9-томник, книги которого пронумерованы в таком порядке: 987654321. За одно перемещение можно взять любые два рядом стоящих тома и поставить их на любое другое место полки, в том числе между двумя другими томами. За какое наименьшее число таких перемещений можно получить натуральное расположение томов 123456789. ![]()
Задачу решили:
27
всего попыток:
36
В координатной плоскости построены парабола y = x2 - 5x + 10 и окружность, пересекающая параболу в четырех точках A, B, C и D. Известны абсциссы трех точек: xA = 23, xB = –24, xC = – 25. Найдите абсциссу четвертой точки D. ![]()
Задачу решили:
20
всего попыток:
28
Девочка пронумеровала черные клетки шахматной доски 8х8 числами от 1 до 32 в натуральном порядке так, как показано на рисунке. Мальчик собирается пронумеровать числами от 1 до 32 белые клетки этой доски так, чтобы суммы четырех чисел в любом квадрате 2х2 оказались равными. Сколькими различными способами мальчик сможет это сделать? В ответе укажите сумму всех чисел, расположенных на «белой» диагонали всех возможных решений (эти клетки отмечены звездочками). ![]()
Задачу решили:
13
всего попыток:
27
25 точек расположены в узлах решетки в форме квадрата (рис. слева). Сколько симметричных маршрутов можно проложить из точки A в точку B по линиям решетки так, чтобы каждый маршрут проходил через все точки и не пересекал себя? На рисунке справа показаны два различных симметричных маршрута. ![]()
Задачу решили:
15
всего попыток:
17
В примере на умножение многозначных чисел в столбик разным буквам соответствуют разные цифры, одинаковым буквам – одинаковые цифры. Звездочками обозначены любые цифры. Найдите число СИЛЁН и укажите его в ответе. ![]()
Задачу решили:
11
всего попыток:
25
21 точка расположена в узлах решетки в форме равностороннего треугольника (рис. слева). Сколько замкнутых маршрутов, обладающих поворотной симметрией 3-го порядка, можно проложить по линиям решетки так, чтобы каждый маршрут проходил через все точки и не пересекал себя? Например, на рисунке справа показаны два различных симметричных маршрута на треугольном поле меньшего размера. ![]()
Задачу решили:
12
всего попыток:
18
Фигура «Ёлочка» сложена из полного набора пентамино и украшена замкнутой гирляндой из 12 лампочек. Гирлянда является маршрутом шахматного коня, который перескакивая по лампочкам пробегает по всей гирлянде и возвращается к исходной лампочке, и при этом конь побывал в одной из клеток каждого пентамино. Перевесьте гирлянду так, чтобы маршрут шахматного коня был симметричным, а конь побывал в одной из клеток каждого пентамино. В ответе укажите число симметричных маршрутов шахматного коня. ![]()
Задачу решили:
20
всего попыток:
35
Рассмотрим бесконечное множество ромбов со стороной a и углом a°. Какое наибольшее целое значение может принимать площадь ромба из этого множества? ![]()
Задачу решили:
9
всего попыток:
41
В кубе ABCDA1B1C1D1 с ребром 1 проведен отрезок, соединяющий вершину A куба с центром грани A1B1C1D1. Этот отрезок начинает непрерывно «скользить» своими концами по двум скрещивающимся диагоналям AC и B1D1 противоположных граней куба, не меняя своей длины. Двигаясь таким образом, отрезок задает линейчатую поверхность, изображенную на рисунке. Найдите площадь поверхности. Полученное значение площади поверхности округлите до десятых и ответ запишите в виде неправильной дроби.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|