img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 19
всего попыток: 23
Задача опубликована: 16.11.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В координатной плоскости Oxy задана парабола y=x2, на которой отмечены все ее точки с целыми координатами.

Хорды параболы

Проведены всевозможные хорды параболы, с концами в отмеченных точках.  Расположим хорды в порядке возрастания их длины, без повторений, и рассмотрим последовательность квадратов длин этих хорд. Начало последовательности выглядит так: 2, 4, 10, 16, 18, 20, 26, …. На рисунке изображена хорда AB, которой соответствует а12 = 42+82 = 80. Найдите 64-ый член последовательности.

Задачу решили: 29
всего попыток: 46
Задача опубликована: 07.12.22 00:08
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Назовем зеркальным числом такое трехзначное число в сумме с трехзначным числом, записанным теми же цифрами, но в обратном порядке, даёт полный квадрат. Найти сумму всех зеркальных числел..

Задачу решили: 19
всего попыток: 25
Задача опубликована: 03.02.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Рассмотрим бесконечную клетчатую плоскость, в каждую клетку которой вписано число натурального ряда, – по порядку, начиная с 1, следуя по спирали (см. рис.). Спираль для определенности будем считать закручивающейся по часовой стрелке.

Круги на спирали

Введем прямоугольную систему координат с началом в центре клетки с числом 1 и осями, параллельными сторонам клеток. Нарисуем в ней четыре параболы y=x3, y=–x3, x=y3 и x=–y3. Рассмотрим на параболах точки с целыми координатами. Каждая такая точка определяет клетку плоскости, а значит, и написанное в ней число. Например, точке параболы (0; 0) соответствует число 1, точке (1; 1) — число 9, а точке (2; 8) — число 283. Все такие числа выделены зеленым цветом. Сгруппируем выделенные числа так, чтобы все они (кроме центральной единицы) лежали на концентрических окружностях. На рисунке приведены первые две окружности.  Найдите среднее арифметическое чисел, расположенных на 10-ой окружности и укажите его в ответе.

Задачу решили: 12
всего попыток: 16
Задача опубликована: 24.02.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Гипотрохоида — плоская кривая, образуемая фиксированной точкой, находящейся на фиксированной радиальной прямой окружности, катящейся по внутренней стороне неподвижной окружности. Гипотрохоида задается тремя параметрами: R — радиус неподвижной окружности, r — радиус вращающейся окружности, d — расстояние от фиксированной точки до центра вращающейся окружности. На рисунке приведена гипотрохоида с параметрами R=11, r=7, d=11, которая делит плоскость на 35 частей.

Деление плоскости на части

На сколько частей разделит плоскость гипотрохоида с параметрами R = p101, r = p100, d = p101, где p100 и p101 — простые числа с номерами 100 и 101?

Задачу решили: 19
всего попыток: 39
Задача опубликована: 19.04.23 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vochfid

Сколько действительных корней имеет уравнение 100 cos=√x?

Задачу решили: 14
всего попыток: 17
Задача опубликована: 22.03.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

На рисунке изображена красная «змейка», представляющая собой бесконечную ломаную, соседние звенья которой перпендикулярны, длины её звеньев – натуральные числа 1, 2, 3, …

Ломаная в параболе

Докажите, что все вершины ломаной лежат на параболе. Ломаная делит внутреннюю область параболы на криволинейные треугольники, площади которых соответственно равны S1, S2, S3, …

Найдите площадь S100 сотого криволинейного треугольника и укажите ее в ответе.

Задачу решили: 18
всего попыток: 20
Задача опубликована: 29.03.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg

Учительница написала на доске трехзначное число АНА, и каждому ученику раздала по карточке, с двумя разными цифрами n и m, все четыре натуральных числа A, H, m и n - различны. Девочек она попросила найти значения выражения An + Hm + An, а мальчиков попросила найти значение выражения Am + Hn + Am. Выполнив задание, ученики удивились, потому что и у девочек, и у мальчиков получилось одно и тоже число. Какое наибольшее число АНА учительница могла написать на доске? 

Светлая память Анне Николаевне Андреевой, учителю математики  и нашей коллеге на Диофанте.ру с ником xyz, позже AnnaAndreeva.

Задачу решили: 20
всего попыток: 25
Задача опубликована: 06.05.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Натуральный ряд «удвоили», то есть каждое число записали дважды. Затем полученный ряд разбили на множества: M1, M2, M3, …, так, что множество Mn содержит n чисел. Ниже вертикальными черточками показано разбиение начала «удвоенного» натурального ряда на множества: 1,|1, 2,|2, 3, 3,|4, 4, 5, 5,|6, 6, 7, 7, 8,|8, 9, 9, 10, 10, 11,|11, 12, 12, 13, 13, Найдите сумму чисел в множестве M2024, укажите ее в ответе.

+ 2
  
Задачу решили: 12
всего попыток: 17
Задача опубликована: 10.06.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: user033 (Олег Сopoкин)

На шестиугольной сетке ячейки закрашены следующим: красится одна ячейка и все, расположенные вдоль трех прямых, проходящих через центр начальной ячейки и образующих между собой шесть «углов» величиной 60°. В каждом из этих «углов» красятся ячейки, образующие новые «углы» величиной 60° так, что между ними образуются «углы» из незакрашенных ячеек, и так далее до бесконечности.

Снежинки

Закрашенные ячейки в «правильных шестиугольниках» с центром в начальной образуют «снежинки». Число ячеек в этих «снежинках» задают последовательность  1, 7, 13, 19, 31, 49, 67, … Найдите номер «снежинки», которая содержит 15151 ячейку.

Задачу решили: 22
всего попыток: 29
Задача опубликована: 12.08.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: solomon

Вершины четырехугольника ABCD лежат на параболе y = x2, диагонали AC и BD перпендикулярны. Известны абсциссы трех его вершин: xA = 23, xB = –24, xC = – 25.

Парабола и четырехугольник

Найдите абсциссу вершины D этого четырехугольника.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.