Лента событий:
TALMON добавил решение задачи "Гирлянда на ёлочке" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
102
всего попыток:
114
Найти все простые числа p и q, что 2p-q2=1999. В ответ введите максимальное возможное p.
Задачу решили:
108
всего попыток:
166
Число 2003/(2^2003) записано в виде конечной десятичной дроби. Какая цифра у него стоит на четвертом месте с конца?
Задачу решили:
85
всего попыток:
155
Число назовем хорошим, если оно 20-значное и любое другое 20-значное число с такой же суммой цифр больше него. Сколько существует хороших чисел?
Задачу решили:
67
всего попыток:
81
Найдите максимальное натуральное n, для которого {√n} = {√(n+100)}. Здесь {x} — дробная часть числа x, то есть разность между числом x и наибольшим не превосходящим его целым числом
Задачу решили:
68
всего попыток:
95
Последовательность {an} (n = 0, 1, 2, …) задана формулой an = 23n+36n+2+56n+2. Найдите НОД(a0, a1, …, a2007).
Задачу решили:
45
всего попыток:
65
Пусть а1, а2, …, а100 – натуральные числа. Для каждой пары чисел аi, аj при i < j выписываются числа аi+аj, аiаj и |аi–аj|. Найдите наибольшее возможное значение количества нечётных чисел среди выписанных.
Задачу решили:
59
всего попыток:
311
Сколько существует пар положительных целых чисел, удовлетворяющих уравнению x2+10!=y2?
Задачу решили:
69
всего попыток:
94
Все члены конечной последовательности являются натуральными числами. Известно, что каждый член этой последовательности, начиная со второго, либо в 6 раз больше, либо в 6 раз меньше предыдущего, а сумма всех членов последовательности равна 2024. Какое наибольшее количество членов может быть в такой последовательности?
Задачу решили:
37
всего попыток:
74
Известно, что a1 < a2 < ... < a2014 простые числа и a12+a22+...+a20142 делится на 2015. Найти минимально возможное a1.
Задачу решили:
81
всего попыток:
126
m и n - целые числа такие, что m2=n2+8n-3. Найдите сумму всех таких возможных n.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|