Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
175
всего попыток:
314
Есть весы, показывающие точный вес, и 6 одинаковых на вид монет, одна из которых фальшивая: её вес отличается от веса настоящей монеты (веса настоящих монет одинаковы). За какое наименьшее число взвешиваний можно наверняка определить вес настоящей монеты и вес фальшивой?
Задачу решили:
124
всего попыток:
259
Три миссионера и три аборигена хотят переправиться через реку на лодке, которая вмещает только двоих. Если миссионеры окажутся в меньшинстве на берегу или рядом с берегом, то аборигены их сразу съедят. За какое наименьшее число рейсов все они смогут безопасно переправиться на другой берег? (Рейсы нужно считать все: туда и обратно — это два рейса.)
Задачу решили:
60
всего попыток:
97
Конь может сделать N ходов (N≥2) и вернуться в исходную клетку, побывав при этом на всех горизонталях и вертикалях шахматной доски N×N. Найдите сумму всех возможных значений N.
Задачу решили:
122
всего попыток:
257
В ряду 10 монет. Сначала подряд лежат несколько (от 1 до 9) настоящих, которые весят по 10 граммов, а все следующие за ними — фальшивые, весящие по 9 граммов. За какое минимальное число взвешиваний на чашечных весах без гирь можно определить, какие монеты — настоящие, а какие — фальшивые?
Задачу решили:
62
всего попыток:
251
Имеется предмет, о котором известно, что его вес составляет целое число кг от 1 до 27. Также есть чашечные весы, на обе чашки которых можно класть гири. Определите наименьшее количество гирь, с помощью которых можно определить вес предмета.
Задачу решили:
64
всего попыток:
156
Перед двумя игроками кучка из 1000 спичек. В начале игры первый игрок берёт из неё любое количество спичек от 1 до 999, а затем каждый из игроков по очереди берёт любое число оставшихся спичек, но не больше, чем перед этим взял другой игрок. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку. Какое наименьшее количество спичек должен взять в начале игры первый игрок, чтобы обеспечить себе победу при любых ходах второго игрока?
Задачу решили:
84
всего попыток:
567
Перед Вами 50 одинаковых на вид кубиков — 25 берёзовых и 25 сосновых. Любой сосновый кубик на полграмма легче любого берёзового. Ваша задача: используя чашечные весы без гирь, отложить две разного веса кучки из одинакового числа кубиков. Какое наименьшее число взвешиваний Вам потребуется?
Задачу решили:
34
всего попыток:
173
Перед Вами 56 одинаковых на вид кубиков — 28 берёзовых и 28 сосновых. Любой сосновый кубик на полграмма легче любого берёзового. Ваша задача: используя чашечные весы без гирь, отложить две разного веса кучки из одинакового числа кубиков. Какое наименьшее число взвешиваний Вам потребуется?
Задачу решили:
24
всего попыток:
49
Двое играют в следующую игру. У них есть доска 30х20 и 2 коробочки фишек - в одной 600 белых, в другой 400 чёрных. Ход состоит в том, что первый игрок выбирает коробочку, содержащую фишки, а второй берёт из неё фишку и ставит на любую свободную клетку доски. Игра заканчивается, когда все клетки заняты. Какой наибольший квадрат, во всех клетках которого стоят фишки одного цвета, может получить второй, независимо от игры первого? (В ответе укажите длину стороны этого квадрата).
Задачу решили:
28
всего попыток:
118
На листке первый игрок записал число 0. Затем по очереди справа к выражению второй пишет знак плюс или минус, а первый одно из натуральных чисел от 1 до 2015. Оба делают по 2015 ходов, причем первый записывает каждое из чисел от 1 до 2015 ровно по одному разу. В конце игры первый игрок получает выигрыш, равный модулю алгебраической суммы, написанной на листке. Какой наибольший выигрыш он может себе гарантировать?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|