Лента событий:
avilow предложил задачу "Реши, если силен" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
67
всего попыток:
81
Найдите максимальное натуральное n, для которого {√n} = {√(n+100)}. Здесь {x} — дробная часть числа x, то есть разность между числом x и наибольшим не превосходящим его целым числом
Задачу решили:
68
всего попыток:
95
Последовательность {an} (n = 0, 1, 2, …) задана формулой an = 23n+36n+2+56n+2. Найдите НОД(a0, a1, …, a2007).
Задачу решили:
45
всего попыток:
65
Пусть а1, а2, …, а100 – натуральные числа. Для каждой пары чисел аi, аj при i < j выписываются числа аi+аj, аiаj и |аi–аj|. Найдите наибольшее возможное значение количества нечётных чисел среди выписанных.
Задачу решили:
111
всего попыток:
149
Решите уравнение (x возводится в степень x бесконечное число раз). В качестве ответа введите значение x9.
Задачу решили:
92
всего попыток:
101
Найдите сумму всех чисел, которые в 33 раза больше, чем сумма составляющих их цифр.
Задачу решили:
61
всего попыток:
95
Число 3 можно представить в виде суммы двух и более натуральных чисел таким образом: 1+2, 2+1 и 1+1+1. Сколько существует таких способов для числа 100?
Задачу решили:
95
всего попыток:
143
Два парома отправляются одновременно с разных берегов реки и встречаются в 140 метрах от берега, достигают противоположных берегов и сразу отправляются обратно. Второй раз они встречаются в 80 метрах от противоположного берега. Определите ширину реки.
Задачу решили:
76
всего попыток:
92
На окружности с центром в точке O и радиусом 1 отмечены точки A и B. Хорда AB является диаметром второй окружности, при этом на этой окружности имеется точка C такая, что расстояние OC является максимальным. Найдите квадрат длины хорды AB.
Задачу решили:
78
всего попыток:
91
Для натуральных чисел a, b и c верны следующие равенства a3-b3-c3=3abc, a2=2(b+c). Чему равно a+b+c?
Задачу решили:
56
всего попыток:
74
Сумма номеров домов, которые стоят по одну сторону одного городского квартала, равна 135, по одну сторону другого квартала – 235, причем некоторые дома этих кварталов имеют одинаковые номера. Укажите эти номера. В ответ запишите произведение найденных чисел.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|