Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
43
всего попыток:
180
На столе лежит 100 монет орлами вверх. За одно действие вы можете перевернуть ровно 93 монетки. Какое наименьшее количество действий нужно совершить, чтобы все монетки лежали вверх решками.
Задачу решили:
55
всего попыток:
108
f(1111)=4, f(1234)=3, f(4567)=2, f(1357)=4, f(6518)=4, f(3817)=6, f(8008)=6, f(2014)=?
Задачу решили:
26
всего попыток:
62
Для членов последовательности натуральных чисел a1, a2,... известно, что iaj>jai для всех i>j. a1000=2014. Найдите минимальное возможное значение a500.
Задачу решили:
81
всего попыток:
146
Какое количество точек, у которых хотя бы одна из координат является целым числом, лежит на окружности x2+y2=49?
Задачу решили:
44
всего попыток:
118
Основание правильной пирамиды ABCD является квадратом со стороной 2. Вершина пирамиды E находится на высоте 1 от основания. На стороне CE посредине отмечена точка F. Муравей ползет из точки A в точку F по кратчайшему пути. Найдите квадрат расстояния пройденного муравьем.
Задачу решили:
35
всего попыток:
93
Кубик Рубика был в собранном состоянии (все стороны окрашены в одинаковые цвета). Затем сделали некоторое количество оборотов, в результате которых получилось так, что никакие две соседние клетки не окрашены в одинаковые цвета. Какое минимальное количество поворотов могло быть сделано?
Задачу решили:
61
всего попыток:
82
В записи пятизначных чисел N и 2N содержатся все цифры 0, 1, ... , 9. Найти минимальное такое N.
Задачу решили:
25
всего попыток:
329
Три из четырех сторон четырехугольника имеют длины 3, 4 и 5 и два угла у него прямые. Пусть S - сумма различных площадей всех возможных таких четырехугольников. Чему равна целая часть S?
Задачу решили:
67
всего попыток:
110
Найдите количество 7-значных чисел, состоящих из цифр 1, 2 и 3 и имеющих сумму цифр равную 10.
Задачу решили:
34
всего попыток:
132
Найдите количество пар действительных чисел (a, b) таких, что если c является корнем уравнения x2+ax+b=0, то и c2-2 также является корнем.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|