img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid решил задачу "Гирлянда на ёлочке" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 60
всего попыток: 74
Задача опубликована: 21.12.15 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Kf_GoldFish

Как-то Кролик торопился на встречу с осликом Иа-Иа, но к нему неожиданно пришли Винни-Пух и Пятачок. Будучи хорошо воспитанным, Кролик предложил гостям подкрепиться. Пух завязал салфеткой рот Пятачку и в одиночку съел 10 горшков меда и 22 банки сгущенного молока, причем горшок меда он съедал за 2 минуты, а банку молока — за минуту. Узнав, что больше ничего сладкого в доме нет, Пух попрощался и увел Пятачка. Кролик с огорчением подумал, что он бы не опоздал на встречу с осликом, если бы Пух поделился с Пятачком. Зная, что Пятачок съедает горшок меда за 5 минут, а банку молока за 3 минуты, Кролик вычислил наименьшее время, за которое гости смогли бы уничтожить его запасы.

Чему равно это время? (Банку молока и горшок меда можно делить на любые части).

Задачу решили: 41
всего попыток: 57
Задача опубликована: 04.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: логикаimg

В колоде 2016 карт. Часть из них лежит рубашками вверх, остальные - рубашками вниз. За один ход разрешается взять несколько карт сверху, перевернуть полученную стопку и снова положить ее сверху колоды. 

За какое наименьшее число ходов при любом начальном расположении карт можно добиться того, чтобы все карты лежали рубашками вниз?

Задачу решили: 54
всего попыток: 87
Задача опубликована: 11.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: georgp

В классе 16 учеников. Каждый месяц учитель делит класс на две группы. Какое наименьшее количество месяцев должно пройти, чтобы любые два ученика в какой-то из месяцев оказались в разных группах?

Задачу решили: 52
всего попыток: 58
Задача опубликована: 13.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Найти сумму всех x1, x2, …, x100 > 0 таких, что:
x1+1/x2=4
x2+1/x3=1
x3+1/x4=4

X99+1/x100=4
x100+1/x1=1

Задачу решили: 65
всего попыток: 75
Задача опубликована: 22.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: snape

Все 5 представленных на рисунке прямоугольников, включая объединяющий, подобны.

Прямоугольники

Найти отношения площадей А и В.

Задачу решили: 52
всего попыток: 57
Задача опубликована: 27.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100

На доске были написаны несколько различных натуральных чисел. Сумму этих чисел поделили на их произведение, а после этого стерли самое маленькое число и поделили сумму оставшихся чисел на их произведение. Второй результат оказался в 3 раза больше первого. Какое число стерли?

Задачу решили: 37
всего попыток: 72
Задача опубликована: 29.01.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: mikev

Пусть a, b и c — попарно взаимно простые натуральные числа. Найдите сумму всех возможных значений (a + b)(b + c)(c + a)/abc , если известно, что это число целое.

Задачу решили: 48
всего попыток: 53
Задача опубликована: 09.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 3 img
класс: 6-7 img
баллы: 100
Лучшее решение: snape

У нескольких крестьян есть 128 овец. Если у кого-то из них оказывается не менее половины всех овец, остальные сговариваются и раскулачивают его: каждый берет себе столько овец, сколько у него уже есть. Если у двоих по 64 овцы, то раскулачивают кого-то одного из них. Произошло 7 раскулачиваний. Среди крестьян выбирается тот, у кого стало больше всех овец. Сколько у него овец?

+ 7
  
Задачу решили: 70
всего попыток: 72
Задача опубликована: 18.03.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

К натуральному числу N приписали справа три цифры. Получившееся число оказалось равным сумме всех натуральных чисел от 1 до N. Найдите N.

+ 2
  
Задачу решили: 33
всего попыток: 55
Задача опубликована: 22.04.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: логикаimg

N цифр — единицы и двойки — расположены по кругу. Изображенным назовем число, образуемое несколькими цифрами, расположенными подряд (по часовой стрелке или против часовой стрелки). При каком наименьшем значении N все четырехзначные числа, запись которых содержит только цифры 1 и 2, могут оказаться среди изображенных?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.