Лента событий:
vochfid решил задачу "Гирлянда на ёлочке" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
60
всего попыток:
74
Как-то Кролик торопился на встречу с осликом Иа-Иа, но к нему неожиданно пришли Винни-Пух и Пятачок. Будучи хорошо воспитанным, Кролик предложил гостям подкрепиться. Пух завязал салфеткой рот Пятачку и в одиночку съел 10 горшков меда и 22 банки сгущенного молока, причем горшок меда он съедал за 2 минуты, а банку молока — за минуту. Узнав, что больше ничего сладкого в доме нет, Пух попрощался и увел Пятачка. Кролик с огорчением подумал, что он бы не опоздал на встречу с осликом, если бы Пух поделился с Пятачком. Зная, что Пятачок съедает горшок меда за 5 минут, а банку молока за 3 минуты, Кролик вычислил наименьшее время, за которое гости смогли бы уничтожить его запасы. Чему равно это время? (Банку молока и горшок меда можно делить на любые части).
Задачу решили:
41
всего попыток:
57
В колоде 2016 карт. Часть из них лежит рубашками вверх, остальные - рубашками вниз. За один ход разрешается взять несколько карт сверху, перевернуть полученную стопку и снова положить ее сверху колоды. За какое наименьшее число ходов при любом начальном расположении карт можно добиться того, чтобы все карты лежали рубашками вниз?
Задачу решили:
54
всего попыток:
87
В классе 16 учеников. Каждый месяц учитель делит класс на две группы. Какое наименьшее количество месяцев должно пройти, чтобы любые два ученика в какой-то из месяцев оказались в разных группах?
Задачу решили:
52
всего попыток:
58
Найти сумму всех x1, x2, …, x100 > 0 таких, что:
Задачу решили:
65
всего попыток:
75
Все 5 представленных на рисунке прямоугольников, включая объединяющий, подобны. Найти отношения площадей А и В.
Задачу решили:
52
всего попыток:
57
На доске были написаны несколько различных натуральных чисел. Сумму этих чисел поделили на их произведение, а после этого стерли самое маленькое число и поделили сумму оставшихся чисел на их произведение. Второй результат оказался в 3 раза больше первого. Какое число стерли?
Задачу решили:
37
всего попыток:
72
Пусть a, b и c — попарно взаимно простые натуральные числа. Найдите сумму всех возможных значений (a + b)(b + c)(c + a)/abc , если известно, что это число целое.
Задачу решили:
48
всего попыток:
53
У нескольких крестьян есть 128 овец. Если у кого-то из них оказывается не менее половины всех овец, остальные сговариваются и раскулачивают его: каждый берет себе столько овец, сколько у него уже есть. Если у двоих по 64 овцы, то раскулачивают кого-то одного из них. Произошло 7 раскулачиваний. Среди крестьян выбирается тот, у кого стало больше всех овец. Сколько у него овец?
Задачу решили:
70
всего попыток:
72
К натуральному числу N приписали справа три цифры. Получившееся число оказалось равным сумме всех натуральных чисел от 1 до N. Найдите N.
Задачу решили:
33
всего попыток:
55
N цифр — единицы и двойки — расположены по кругу. Изображенным назовем число, образуемое несколькими цифрами, расположенными подряд (по часовой стрелке или против часовой стрелки). При каком наименьшем значении N все четырехзначные числа, запись которых содержит только цифры 1 и 2, могут оказаться среди изображенных?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|