img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 79
всего попыток: 88
Задача опубликована: 21.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Angelina

Отрезки АС и ВD пересекаются в точке М, причем АВ = СD и угол АСD - прямой. Найдите минимальное значение отношения MD/MA.

Задачу решили: 119
всего попыток: 126
Задача опубликована: 11.01.13 08:00
Прислал: admin img
Источник: Олимпиада имени Леонарда Эйлера
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

В параллелограмме ABCD со стороной AB = 1 точка M — середина стороны BC, а угол AMD составляет 90 градусов. Найдите сторону BC.

Задачу решили: 126
всего попыток: 189
Задача опубликована: 23.01.13 08:00
Прислал: admin img
Источник: Олимпиада имени Леонарда Эйлера
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Из квадрата вырезали меньший квадрат, одна из сторон которого лежит на стороне исходного квадрата. Периметр полученного восьмиугольника на 40% больше периметра исходного квадрата. На сколько процентов его площадь меньше площади исходного квадрата?

Задачу решили: 110
всего попыток: 133
Задача опубликована: 13.03.13 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков 2012
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: azat

Дан треугольник ABC, где ?BAC = 60?. Точка S — середина биссектрисы AD. Известно, что ?SBA = 30?. Найдите DC/BS.

Задачу решили: 91
всего попыток: 109
Задача опубликована: 01.04.13 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Дан треугольник АВС, у которого сторона |BC|=3. На стороне BC отложена точка D, так, что |BD|=2.  Чему равно значение |AB|2+2 |AC|2-3 |AD|2?

Задачу решили: 76
всего попыток: 92
Задача опубликована: 08.01.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

На окружности с центром в точке O и радиусом 1 отмечены точки A и B. Хорда AB является диаметром второй окружности, при этом на этой окружности имеется точка C такая, что расстояние OC является максимальным. Найдите квадрат длины хорды AB.

Задачу решили: 81
всего попыток: 146
Задача опубликована: 25.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Какое количество точек, у которых хотя бы одна из координат является целым числом, лежит на окружности x2+y2=49?

Задачу решили: 25
всего попыток: 329
Задача опубликована: 03.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Три из четырех сторон четырехугольника имеют длины 3, 4 и 5 и два угла у него прямые. Пусть S - сумма различных площадей всех возможных таких четырехугольников. Чему равна целая часть S?

Задачу решили: 135
всего попыток: 163
Задача опубликована: 19.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найдите площадь зеленого квадрата.

tr6.png

Задачу решили: 74
всего попыток: 166
Задача опубликована: 28.01.15 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Четыре окружности, имеющие одинаковый диаметр, размещены внутри треугольника, площадь которого 1.

lv.png

Найдите диаметр окружностей d. Ответ приведите в виде целого числа [1000*d]. 

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.