img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: makar243 добавил комментарий к решению задачи "Ломаные маршруты - 2" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 56
всего попыток: 67
Задача опубликована: 22.02.17 08:00
Прислал: solomon img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Bulat (Миха Булатович)

В восточном городе 2/3 мужчин состоят в браке и 1/2 женщин замужем. Причем мужчины имеют по одной, две, три и четыре жены поровну. Какова доля,состоящих в браке,относительно всего населения города. Ответ представить в виде рациональной дроби. 

Задачу решили: 58
всего попыток: 91
Задача опубликована: 01.03.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Найти наименьшее число, состояще из цифр от 1 до 9 (каждая цифра входит 1 раз), которое делится нацело на 99.

Задачу решили: 35
всего попыток: 108
Задача опубликована: 03.03.17 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Marutand

Друзья пришли в гости и их рассадили по столам. За половиной столов сидело по 5 друзей, в за второй половиной столов по x. Когда всех друзей опросили сколько за столом сидит их друзей, то в среднем получилось 16. Найдите x.

Задачу решили: 43
всего попыток: 57
Задача опубликована: 08.03.17 08:00
Прислал: fortpost img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg

Остап Бендер организовал в городе Арбатове раздачу слонов населению. На раздачу явилось 28 членов профсоюза и
37 не членов, причем Остап раздавал слонов поровну членам профсоюза и поровну не членам, при этом каждому достался хотя бы один слон. Оказалось, что существует лишь один способ раздачи (так, чтобы раздать всех слонов). Какое наибольшее число слонов могло быть у Остапа Бендера?

Задачу решили: 56
всего попыток: 191
Задача опубликована: 22.03.17 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

На какое наименьшее количество частей надо разрезать арбуз так, чтобы после того, как будет съедена мякоть - останется ровно 7 корок. (Ломать корки в процессе поедания нельзя, только есть мякоть.)

Задачу решили: 97
всего попыток: 112
Задача опубликована: 05.04.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

 На рисунке |AB|=4, |BC|=3, |CD|=2. Найти площадь голубого квадрата.

Задачу решили: 30
всего попыток: 36
Задача опубликована: 17.04.17 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

При разрезании кольца нечетным количеством прямых получается последовательность наибольшего количества частей. К примеру для последовательности количества прямых 1,3,5,...,2n-1 соответственно последовательность наибольшего количества частей 2,9,... Далее составляем последовательность разностей членов последовательности наибольшего количества частей(а2-а1,а3-а2, и т.д). Найти сумму первых 5 членов этой последовательности.

Задачу решили: 73
всего попыток: 90
Задача опубликована: 26.04.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Площадь правильного шестиугольника равна 1. Найти площадь закрашенной части.

Задачу решили: 36
всего попыток: 40
Задача опубликована: 28.04.17 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: georgp

Натуральные числа k, m, n больше 1 и взаимно просты, при этом kmn=10(k+m+n). Найти минимальное значение km+mn+nk.

Задачу решили: 55
всего попыток: 60
Задача опубликована: 08.05.17 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: mx

Найти минимальный радиус круга, в котором можно поместить без наложений 7 кругов радиуса 1?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.