img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: DOMASH добавил комментарий к решению задачи "Ломаные маршруты - 2" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 45
всего попыток: 60
Задача опубликована: 12.04.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Buuul (Майк Бул)

В старом районе города средняя высота зданий в 2,5 раза меньше средней высоты зданий нового района и меньше на 25% средней высоты зданий города. Найти отношение количества зданий в новом и старом районах города.

Задачу решили: 40
всего попыток: 63
Задача опубликована: 15.04.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Внутри квадрата взята произвольно точка, через которую провели прямые параллельно сторонам и диагоналям квадрата. При этом квадрат разделен на 8 частей. Обходя по часовой стрелке отношения площадей их выразились 25:9:1:1:5:9:33:x. Найдите x.

Задачу решили: 49
всего попыток: 70
Задача опубликована: 17.04.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Если 
x+\frac{1}{x}=6 и  x^2+\frac{1}{x^3}=46,

то чему равно x^3+\frac{1}{x^2}.

Задачу решили: 41
всего попыток: 57
Задача опубликована: 22.04.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В том году, когда Вася отмечал день рождения, ему было столько лет, квадратом которых является трехзначное число, состоящее из первых трёх цифр года рождения. Вася вычислил, что если бы он родился в этот день, то был бы счастливчиком встретить один из дней своего рождения в году квадрата своего возраста. В каком году родился Вася?

Задачу решили: 54
всего попыток: 60
Задача опубликована: 24.04.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Числа от 1 до 9 записаны в некотором порядке. В каждой соседней паре вычислили среднее арифметическое значение и сложили все получившиеся результаты. Найдите максимально возможную сумму. Ответ укажите с точностью до одного знака после запятой.

Задачу решили: 66
всего попыток: 106
Задача опубликована: 29.04.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: leonid (Леонид Шляпочник)

Гимнасты одного веса построили пирамиду, изображенную на рисунке.

Пирамида гимнастов

Найдите вес одного гимнаста, если известно, что центральный гимнаст нижнего ряда давит на пол весом 264 кг.

Задачу решили: 67
всего попыток: 95
Задача опубликована: 08.05.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Физрук дал Вовочке 10 пуль для стрельбы из пневматической винтовки. За каждый промах физрук отнимал одну пулю, а за каждое попадание в цель добавлял пулю. Пока не кончились пули Вовочка сделал 55 выстрелов. Сколько раз Вовочка попал в цель?

Задачу решили: 37
всего попыток: 61
Задача опубликована: 13.05.19 08:00
Прислал: admin img
Источник: Элементы большой науки: elementy.ru
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

Класс из 16 человек писал математический тест, в котором к каждому заданию предлагались 4 возможных варианта ответа. После сдачи решений выяснилось, что ни у каких двух учеников не совпало более одного ответа. Какое наибольшее число заданий могло быть в таком тесте?

Задачу решили: 37
всего попыток: 40
Задача опубликована: 15.05.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: avilow (Николай Авилов)

Приведенные квадратные трехчлены, каждый из которых имеет два различных корня, f(x) и g(x) таковы, что f(2)=g(3), f(3)=g(2), f(a)=0, f(b)=0, g(c)=0, g(d)=0, a≠b, c≠d. Найти a+b+c+d.

Задачу решили: 48
всего попыток: 58
Задача опубликована: 17.05.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Marutand

Вовочка и физрук в тире сделали по 5 выстрелов. У обоих сумма результатов первых трех выстрелов  оказалась одинаковой, но вот в последними тремя выстрелами физрук выбил в три раза больше очков, чем Вовочка. Мишень в итоге оказалась с пробоинами 10, 9, 9, 8, 8, 5, 4, 4, 3, 2 очков. Определите сколько очков выбил каждый из них третьим выстрелом и введите сумму этих очков.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.