img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 30
всего попыток: 35
Задача опубликована: 09.12.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

Найдите количество непрерывных функций f(x), определенных для всех действительных x и удовлетворяющих уравнения xf(y)+yf(x)=(x+y)f(x)f(y) для произвольных x и y.

Задачу решили: 27
всего попыток: 47
Задача опубликована: 18.12.20 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Натуральные числа А, В, С, меньшие 100, таковы, что А дважды увеличивается на В%, а затем дважды уменьшается на А% и получается С. Какое наибольшее значение может принять каждое из чисел А, В, С? В ответе укажите их сумму.

Задачу решили: 30
всего попыток: 41
Задача опубликована: 21.12.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите все действительные x, принадлежащие отрезку [0, 2π] и удовлетворяющие неравенству
2cosx ≤ |(1+sin2x)1/2 - (1-sin2x)1/2| ≤ 21/2.
Минимальная длина отрезка, содержащего все решения, представима в виде pπ/q. В качестве ответа введите p/q.

Задачу решили: 37
всего попыток: 49
Задача опубликована: 30.12.20 08:00
Прислал: DOMASH img
Источник: Авторская
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: georgp

В числовом ребусе
ГОД + БЫКА = 2021
замените разные буквы разными цифрами так, чтобы максимальное число «БЫКА» соответствовало тоже году быка. Чему равно максимальное число «БЫКА»?

Задачу решили: 17
всего попыток: 68
Задача опубликована: 01.01.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В мусульманском календаре их было 11, в григорианском календаре 13. Каким будет 14-ый год?

Задачу решили: 31
всего попыток: 38
Задача опубликована: 08.01.21 08:00
Прислал: DOMASH img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Дату рождения Николая Ивановича - любителя головоломок, учителя математики с 45-летним стажем, родившегося во второй половине 20-го века, его ученики зашифровали пятизначными простыми числами из разных цифр: ММДГГ, ДММГГ, ГГММД. Когда же родился Николай Иванович? В качестве ответа введите число, соответствующее ММДГГ.

Задачу решили: 24
всего попыток: 49
Задача опубликована: 18.01.21 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Шахматную доску 8×8 разрезали на n прямоугольников так, что в каждом прямоугольнике одинаковое число белых и черных клеток, и при этом, если ai - число клеток в i-м прямоугольнике, то a1 < a2 < ... < an

Найдите наибольшее число n, при котором возможно такое разбиение. В ответе укажите количество возможных различных разбиений a1, a2, ..., aпри полученном n.

Задачу решили: 27
всего попыток: 42
Задача опубликована: 20.01.21 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Множество значений суммы S = a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d), где a, b, c, d - положительные действительные числа расположены внутри некоторого минимально возможного отрезка действительной оси. Укажите середину этого отрезка.

Задачу решили: 39
всего попыток: 54
Задача опубликована: 22.01.21 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: avilow (Николай Авилов)

Есть мешок сахара, чашечные весы и гирька в 1 г. За какое минимальное число взвешений можно взвесить 1 кг сахара?

Задачу решили: 24
всего попыток: 73
Задача опубликована: 03.02.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

В равнобедренном треугольнике высота к основанию H=R+p+r, где p - расстояние между центрами описанной и вписанной окружностей, R, r - их радиусы соответственно, выражены натуральными числами. Найти наименьшее значение высоты H.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.