img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 21
всего попыток: 31
Задача опубликована: 21.06.21 08:00
Прислал: solomon img
Источник: Индийская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Две дуги окружностей с центрами двух смежных вершин квадрата и радиусами, равными стороне квадрата, делят внутри квадрат на 4 части. В каждую из частей вписаны окружности с площадями, имеющими  целочисленные значения количества π. Найти наименьшую суммарную площадь этих кругов. В ответе указать количество π.  

Задачу решили: 32
всего попыток: 44
Задача опубликована: 28.06.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: mikev

Внутри окружности, квадрат радиуса которой равен 85, расположен прямоугольный треугольник АВС (АВ-гипотенуза) так, что АВ является хордой. Найти квадрат расстояния СО (О-центр окружности), если известно, что катеты треугольника равны 2 и 8.

Задачу решили: 23
всего попыток: 44
Задача опубликована: 05.07.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Малое основание, боковая сторона (высота) и большое основание прямоугольной трапеции образуют арифметическую прогрессию целочисленных значений. Перпеникуляр из середины наклонной боковой стороны делит эту трапецию на два четырехугольника с целочисленными площадями. Найти отношение площадей этих четырехугольников (меньшей к большей) для трапеции наименьшей площади.

+ 2
+ЗАДАЧА 2198. Три квадрата (Диего Раттаджи)
  
Задачу решили: 32
всего попыток: 42
Задача опубликована: 09.07.21 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Квадраты A и B таковы, что сумма их площадей минимальна. Найти отношение площадей B:A.

Три квадрата

Задачу решили: 20
всего попыток: 79
Задача опубликована: 14.07.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Из  двух вершин А и С треугольника АВС проведены внешние  биссектрисы к углам А и С треугольника, которые пересекаются со сторонами ВС и АВ соответственно в точках D и E. Найти наименьшее значение угла В в градусах, если AD=AC=CE.

Задачу решили: 41
всего попыток: 70
Задача опубликована: 16.07.21 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: mikev

Пять кругов размещены последовательно с одинаковым отступом, красная линия касается крайних левого и праых кругов. Площадь закрашенной зеленым части равна 30, а площадь синей - 5.

5 кругов

Найдите площадь одного круга. 

Задачу решили: 29
всего попыток: 50
Задача опубликована: 19.07.21 10:38
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

В период спада эпидемии короновируса в специализированные больницы города N в течении недели ежесуточно поступали больные, число которых в среднем составляет 3% от числа больных, лечившихся в этих больницах в предыдущие сутки и, ежесуточно выздоравливало в среднем 28% от числа больных, лечившихся в больницах города в предыдущие сутки. Сколько больных находилось в больницах города в начале этой недели, если в конце недели их оставалось 4374 человека.

Задачу решили: 29
всего попыток: 34
Задача опубликована: 26.07.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В трапеции с целочисленными основаниями в соотношении 1:5 проведен отрезок, параллельный основаниям через точку пересечения диагоналей. Найти наименьшее целочисленное значение длины этого отрезка.

Задачу решили: 24
всего попыток: 96
Задача опубликована: 28.07.21 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

На рисунке изображена фигура тетрамино, состоящая из четырех одинаковых кубиков.

Параллепипед из тетрамино

Из какого наименьшего количества таких тетрамино можно сложить прямоугольный параллелепипед?

Задачу решили: 20
всего попыток: 55
Задача опубликована: 16.08.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: Sam777e

"Докажем", что все лошади одного цвета. Укажите номер первого ошибочного пункта в следующем изложении:

Докажем по индукции, что для любого натурального числа n выполняется следующее утверждение:

Любая группа из n лошадей состоит из лошадей одного цвета.

1. Для n=1 утверждение верно. Действительно, любая группа из ОДНОЙ лошади состоит из лошадей одного цвета.

Покажем, что из выполнимости утверждения для какого-то n следует его выполнимость для n+1.

2. Пусть утверждение верно для какого-то n. Рассмотрим любую группу из n+1 лошадей.

3. Удалим из этой группы одну лошадь. Согласно предположению индукции, все оставшиеся n лошадей одного цвета.

4. Вернём удалённую лошадь, а вместо неё удалим другую лошадь.

5. Опять все оставшиеся n лошадей одного цвета.

6. Следовательно, все n+1 лошадь одного цвета.

7. Теорема доказана! Smile

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.