Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
29
всего попыток:
32
Найти площадь трапеции с основаниями 9 и 4, боковыми сторонами 3 и 4.
Задачу решили:
13
всего попыток:
15
На какое наименьшее число остроугольных треугольников можно разрезать прямоугольник?
Задачу решили:
14
всего попыток:
19
Перед вами часть обычной шахматной доски и четыре коня на ней - 2 белых и 2 черных. За какое наименьшее число ходов можно обменять их местами:
Задачу решили:
10
всего попыток:
22
Имеются двусторонняя линейка и окружность, радиус которой больше ширины линейки. За одну операцию можно либо провести прямую, либо две параллельные прямые, используя обе стороны линейки. При этом если заданы две точки, то не разрешается провести за одну операцию такие две параллельные прямые, что одна из них проходила через одну из них, а другая – через другую. За какое минимальное количество операций можно найти центр окружности?
Задачу решили:
23
всего попыток:
27
Вовочка из натурального ряда от 1 до 2024 сначала вычеркнул первое, третье, пятое числа. Из оставшегося ряда он снова вычеркнул первое, третье, пятое. Он занимался этим до конца урока, пока не осталось единственное невычеркнутое число. Какое число осталось?
Задачу решили:
11
всего попыток:
35
Имеются двусторонняя линейка и окружность, радиус которой больше ширины линейки. За одну операцию можно либо провести прямую, либо две параллельные прямые, используя обе стороны линейки. За какое минимальное количество операций можно найти центр окружности?
Задачу решили:
22
всего попыток:
25
По кругу стоят 7 диванов, на них сидит всего 50 человек, на каждом диване - хотя бы один человек. Каждый сказал:"На следующем по часовой стрелке диване ровно половина людей выше меня, а ровно половина - ниже." Какое наибольшее число людей могло сказать правду?
Задачу решили:
26
всего попыток:
26
Вовочка из натурального ряда от 1 до 2024 сначала вычеркнул первое, третье, пятое и так далее числа. Из оставшегося ряда он снова вычеркнул первое, третье, пятое и так далее числа. Он занимался этим до конца урока, пока не осталось единственное невычеркнутое число. Какое число осталось?
Задачу решили:
14
всего попыток:
42
Одни и те же четыре фигуры – два треуольника и два полиомино – складываются двумя способами в виде "большого треугольника", по такому принципу: 1. Все вершины фигур лежат в узлах квадратной сетки. На самом деле, "большой треугольник" здесь иллюзорен. Угол AKB в одном случае чуть меньше, а в другом чуть больше 180 градусов на одинаковую величину.
Можно повторить тот же фокус и с другой четвёркой фигур – парой треугольников и парой полиомино, складывая их в "большой треугольник" двумя способами по этому же принципу.
В данном примере площадь треугольника ABC (если предположить, что AB это не ломаная, а отрезок) равна 32,5.
Найдите четвёрку таких фигур с минимальной площадью треугольника ABC ("выпрямленного"), при которой абсолютная величина отклонения угла AKB от 180 градусов будет меньше чем в исходном примере. В ответе введите эту площадь.
Задачу решили:
16
всего попыток:
21
На плоскости через точку А проведено 29 прямых, через точку B проведено 34 прямых. Каждая прямая первого пучка пересекают каждую прямую второго пучка, и наоборот. Прямых, принадлежащих обоим пучкам, нет. На сколько частей делят плоскость все эти прямые? Например, на рисунке две прямые пучка А и три прямые пучка B делят плоскость на 15 частей.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|