img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 270
всего попыток: 432
Задача опубликована: 24.04.09 18:54
Прислал: demiurgos img
Источник: По мотивам французской задачи XVII века
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: uchilka725 (Оксана Урусова)

С целью ухода от налогов первый из 5 друзей торговцев одолжил остальным столько денег, сколько было у каждого. Затем также поступил второй, потом третий, потом четвёртый, и наконец пятый. После всех пяти процедур капитал каждого не изменился. Каков капитал первого торговца, если капитал последнего составляет 100 экю?

(Предлагалась на "Первом математическом")
Задачу решили: 277
всего попыток: 916
Задача опубликована: 26.04.09 11:16
Прислала: xyz img
Источник: 4-й заочный конкурс учителей математики
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Имеются две пирамиды: основание одной — треугольник, а другой — четырёхугольник; все рёбра пирамид равны. Пирамиды приложили друг к другу так, что две их треугольные грани полностью совпали. Сколько граней у получившегося многогранника?

Задачу решили: 198
всего попыток: 439
Задача опубликована: 27.04.09 21:20
Прислал: dasaneleq img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

В футбольном турнире каждая команда сыграла с каждой по одному разу. Ровно треть команд хотя бы раз сыграли вничью, а ровно 75% остальных команд не обошлись без поражений. При этом только одна команда не проиграла ни одного матча. Сколько матчей турнира окончились победой одной из команд?

Задачу решили: 161
всего попыток: 647
Задача опубликована: 27.04.09 22:47
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Rep (Сергей Репин)

Какое минимальное количество шаров (любых размеров) нужно разместить вне заданной точки пространства так, чтобы каждый луч с началом в этой точке пересекал хотя бы один из шаров, а сами шары не пересекались?

Задачу решили: 255
всего попыток: 569
Задача опубликована: 29.04.09 11:14
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: ODG (Игорь Логвинов)

В романе 50 глав: 25 с нечётным количеством страниц и 25 — с чётным. Первая глава начинается с нечётной страницы, а каждая из остальных — с новой страницы, сразу следующей за предыдущей главой. Какое максимальное число глав может начинаться с чётной страницы?

Задачу решили: 132
всего попыток: 602
Задача опубликована: 29.04.09 11:14
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Даны 4 точки на плоскости, не лежащие на одной окружности. Каково максимально возможное число окружностей, равноудалённых от всех точек?

Задачу решили: 215
всего попыток: 586
Задача опубликована: 06.05.09 14:53
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Hasmik33

В колонию из 2009 бактерий попадает вирус. Через секунду он уничтожает одну бактерию. Ещё через секунду все бактерии и все вирусы делятся надвое. Далее каждый вирус через секунду после своего рождения уничтожает одну бактерию, а ещё через секунду после этого все бактерии и все вирусы делятся надвое. Через сколько секунд после попадания вируса все бактерии будут уничтожены?

Задачу решили: 231
всего попыток: 718
Задача опубликована: 06.05.09 15:33
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sertyh (Николай Мельниченко)

На какое минимальное число тетраэдров можно разрезать куб? (Тетраэдр — это треугольная пирамида.)

Задачу решили: 220
всего попыток: 486
Задача опубликована: 09.05.09 08:50
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Какое наибольшее число фотографов могут одновременно сфотографировать друг друга, используя широкоугольные объективы, позволящие делать кадры углового размера 173°? (Фотографы — это различные точки плоскости.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.