img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 135
всего попыток: 189
Задача опубликована: 30.11.09 10:00
Прислал: TALMON img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Xamell10n (Александр Забалуев)

Найти площадь треугольника, высоты которого равны: 12, 63/5, 252/13.

Задачу решили: 107
всего попыток: 144
Задача опубликована: 03.12.09 13:24
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Какое наибольшее число сторон выпуклого многоугольника могут быть равны его самой длинной диагонали?

Задачу решили: 54
всего попыток: 103
Задача опубликована: 04.12.09 23:42
Прислал: Vkorsukov img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

В треугольнике АВС из вершины А проведены две прямые, пересекающие основание ВС. При этом диаметры вписанных окружностей трёх образовавшихся треугольников равны между собой. Найти отношение  высоты, опущенной из вершины А на сторону ВС, к диаметру этих окружностей, если величина угла В — 70°, а С — 80°. Ответ округлите до ближайшего целого числа.

Задачу решили: 42
всего попыток: 47
Задача опубликована: 12.12.09 21:56
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

В прямоугольную таблицу вписаны некоторые числа (по одному числу в каждую клетку). Разрешается одновременно изменить знаки на противоположные у всех чисел любого столбца или любой строки. Эту операцию можно применить сколько угодно раз. Всегда ли можно добиться, чтобы суммы чисел, стоящих в каждой строке и в каждом столбце стали неотрицательными?

Задачу решили: 170
всего попыток: 208
Задача опубликована: 14.12.09 10:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: fcsm77

В треугольник вписана окружность радиуса 12. Чему равен минимальный радиус описанной окружности?

Задачу решили: 99
всего попыток: 271
Задача опубликована: 19.12.09 10:00
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Rep (Сергей Репин)

Можно ли из нескольких остроугольных треугольников сложить тупоугольный? (Если можно — укажите минимальное число остроугольных треугольников, если нельзя — введите 0. Накладывать треугольники друг на друга и оставлять пустоты нельзя.)

Задачу решили: 38
всего попыток: 145
Задача опубликована: 20.12.09 10:00
Прислал: demiurgos img
Источник: Турнир городов
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Два различных числа называются похожими, если их десятичные записи совпадают во всех разрядах, кроме одного. Найдите максимальное количество семизначных чисел, среди которых нет двух похожих. 

Задачу решили: 91
всего попыток: 240
Задача опубликована: 22.12.09 22:46
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

На плоскости лежат круг радиуса 1 см и точка, удалённая от его центра на 60 см. Точку разрешается симметрично отразить относительно любой прямой, пересекающей круг. За какое минимальное число таких последовательных отражений Вам удастся переместить точку внутрь круга?

Задачу решили: 55
всего попыток: 164
Задача опубликована: 26.12.09 18:27
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Расстояния между тремя парами скрещивающихся рёбер треугольной пирамиды равны 4, 5 и 6 соответственно. Найдите наименьший объём пирамиды.

Задачу решили: 52
всего попыток: 77
Задача опубликована: 31.12.09 01:38
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

На доске написаны два числа: 0 и 1. На первом шаге напишем между ними их сумму и получим: 0 1 1. На каждом следующем шаге будем вписывать между всеми соседними числами, написанными на предыдущих шагах, их суммы. Таким образом, после второго шага получим: 0 1 1 2 1, после третьего — 0 1 1 2 1 3 2 3 1 и т.д. Найдите сумму всех чисел, написанных после n шагов.

(Пожалуйста, не присылайте файлов!)
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.