Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
33
всего попыток:
52
Имеется набор равносторонних треугольников из бумаги, в котором: Оказалось, что всеми треугольниками из этого набора можно оклеить без пробелов и наложений поверхность правильного тетраэдра, длина ребра которого является натуральным числом N. При оклейке треугольники можно перегибать через ребро тетраэдра. Сколько треугольников в этом наборе, если N принимает наименьшее возможное значение.
Задачу решили:
46
всего попыток:
64
Пространственный крест, изображенный на рисунке, составлен из семи единичных кубиков. Ученик отметил вершины всех единичных кубиков этой фигуры и вычислил расстояния между парами различных вершин. Он утверждает, что ему удалось найти такие расстояния: √1, √2, √3, √4, √5, √6, √7, √8, √9, √10, √11, √12. Сколько ошибок допустил ученик?
Задачу решили:
48
всего попыток:
63
Трехзначное число равно сумме его первой цифры, квадрата второй цифры и куба третьей цифры. Найдите все трехзначные числа, обладающие таким свойством. В ответе укажите их сумму.
Задачу решили:
36
всего попыток:
54
Куб распилили по 3-м плоскостям XOY, XOZ, YOZ и получили 8 брусков, у семи из которых известны площади поверхностей 148, 126, 88, 72, 58, 46, 28. Найти длину ребра куба.
Задачу решили:
27
всего попыток:
79
На какое наименьшее число частей можно разрезать поверхность правильного тетраэдра так, чтобы оклеить куб без пробелов и наложений?
Задачу решили:
17
всего попыток:
45
В ряду стоят несколько книг с разным количеством страниц. Каждая книга состоит из одной или нескольких глав и сшита из 12 одинаковых тетрадей, каждая тетрадь - из нескольких двойных листов, вложенных друг в друга. Если в главе более одной тетради, то все они вложены друг в друга. Первой из вложенных друг в друга тетрадей считается та, в которую вложены все остальные и т.д. Все страницы каждой книги пронумерованы, начиная с 1. Сумма номеров четырех страниц одного из двойных листов четвертой тетради каждой книги равна 338. Найдите максимально возможное общее колличество страниц во всех книгах ряда.
Задачу решили:
27
всего попыток:
95
40 пиратов и капитан делят клад в 100 золотых монет. Пираты хотят получить вместе 80 монет, а капитан хочет получить все. Он предлагает игру. Капитан делит все монеты на 2 кучки, потом на 3 и так далее, пока все кучки не станут равными одной монете. Всего 99 ходов. Если на каком-либо ходе пираты найдут 40 кучек, сумма монет в которых равна 80, то они получают эти деньги. На каком минимальном ходу пираты обязательно получат деньги, как бы ни делил их капитан?
Задачу решили:
50
всего попыток:
65
Ковер Серпинского представляет собой бесконечное разбиение квадрата на меньшие квадраты. Построение выполняется поэтапно: на первом шаге исходный квадрат разбивается на девять равных квадратов и центральный квадрат закрашивается; на втором этапе каждый из оставшихся незакрашенных квадратов разбивается на девять меньших квадратов и центральный квадрат закрашивается, и так до бесконечности. На рисунке показаны разбиения квадрата, которые получаются после первых трех шагов. Сколько закрашенных и незакрашенных квадратов вместе получается на пятом шаге построения ковра Серпинского?
Задачу решили:
42
всего попыток:
68
Имеется 11 монет с различными целыми весами. Сумарный вес любых семи монет больше суммарного веса оставшихся четырех. Найдите наименьший возможный суммарный вес всех монет.
Задачу решили:
43
всего попыток:
50
Найдите четырехзначное число, удовлетворяющее условию:
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|