Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
21
всего попыток:
26
В бесконечно убывающей последовательности 1; 1/2; 1/3; 1/4; 1/5; ... выберите такие десять чисел, которые образуют арифметическую прогрессию, а их сумма – наибольшая. Введите эту сумму.
Задачу решили:
6
всего попыток:
21
Ребра правильного тетраэдра поделены на 6 равных частей. Провели всевозможные плоскости, проходящие через точки деления и параллельные граням тетраэдра, а также четыре плоскости, содержащие сами грани тетраэдра. На какое количество частей эти плоскости разбивают пространство?
Задачу решили:
18
всего попыток:
20
Стороны правильного треугольника со стороной n, где n∈N, разделены точками на единичные отрезки. На сколько частей делят плоскость всевозможные прямые, параллельные его сторонам и проходящие через точки разделения, если n=100? На рисунке изображены эти прямые для треугольника со стороной n=4. Они делят плоскость на 34 части.
Задачу решили:
19
всего попыток:
20
Стороны правильного треугольника со стороной n, где n∈N, разделеныточками на единичные отрезки. На сколько частей делят плоскость стороны треугольника и всевозможные прямые, параллельные его сторонам и проходящие через точки разделения, если n=100?
На рисунке изображены эти прямые для треугольника со стороной n=4. Они (и стороны треугольника) делят плоскость на 43 части.
Задачу решили:
9
всего попыток:
16
В правильном шестиугольнике со стороной 3 нарисовали сетку из единичных равносторонних треугольников (смотри рисунок). Художник время от времени подходит к рисунку с шестиугольником, окунает кисть в банку с краской и закрашивает по линиям сетки весь контур одного равностороннего треугольника любого размера. При этом контур очередного закрашиваемого треугольника может проходить по каким-то ранее закрашенным местам. За какое минимальное количество подходов художник может закрасить всю сетку (включая границу шестиугольника)? На рисунке изображён пример частичного закрашивания сетки после 4-х подходов (исключительно для красоты художник использовал разные цвета). В качестве решения необходимо предъявить доказательство минимальности того количества подходов, которое вы нашли.
Задачу решили:
20
всего попыток:
23
Определить сумму всех целых положительных чисел n < 1000 таких, что из n прямоугольников с размерами 1×n, 2×n, 3×n, ..., n×n можно cложить квадрат. (Прямоугольники нельзя накладывать друг на друга.)
Задачу решили:
18
всего попыток:
27
На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань (буква О, например, написана 3 раза). Сколько раз в среднем надо бросить кубик, чтобы 6 последовательных бросков дали слово "ХОРОШО"?
Задачу решили:
22
всего попыток:
23
Для какого наибольшего натурального числа N в десятичной записи каждого из чисел N, 2N, 3N, …, N² последняя цифра не равна предпоследней?
Задачу решили:
8
всего попыток:
10
Рассмотрим всевозможные замкнутые цепочки правильных n-угольников одинакового размера, центры которых лежат на одной окружности (образуя некоторый правильный многоугольник), и каждые два последовательных многоугольника имеют одну общую сторону. Например, при n=8 существуют ДВЕ такие цепочки. Однако, коллега aaa_uz выдвинул интересную идею о расширении определения таких замкнутых цепочек, используя дополнительные "витки обхода": в случае не замыкания цепочки одним витком обхода, продолжать добавлять новые n-угольники (залезая на старые), пока цепочка не замкнётся: последний n-угольник будет иметь общую сторону с первым. В случае нескольких витков обхода центры n-угольников образуют самопересекающуюся замкнутую ломаную ("звезду"), совершая определённое количество витков обхода вокруг центра цепочки. При n=8 существует ровно ОДНА такая цепочка. Она использует ТРИ витка обхода. Всего существует ТРИ цепочки 8-угольников в расширенном определении: Обозначим f(n) суммарное количество витков обхода всех цепочек n-угольников. Таким образом, f(8) = 1+1+3 = 5. Найдите f(10403).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|