img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 19
всего попыток: 25
Задача опубликована: 10.01.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найти квадрат отношения радиусов, описанных около двух четырехугольников со сторонами 2, 3, 4, 5 и 3, 4, 5, 6.

Задачу решили: 22
всего попыток: 37
Задача опубликована: 12.01.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: putout (Дмитрий Лебедев)

a/b + b/c + c/a=3,
b/a + c/b + a/c=2.
(a/b)3 + (b/c)3 + (c/a)3=?

Задачу решили: 21
всего попыток: 24
Задача опубликована: 29.01.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Lec

В трапеции угол между диагоналями равен 30°, и они делят острые углы трапеции пополам. Найдите площадь трапеции, если большее основание трапеции равно 8.

Задачу решили: 22
всего попыток: 24
Задача опубликована: 02.02.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Золотой треугольник и прямоугольный с острым углом 36° имеют равные по длине боковые стороны первого и гипотенузы второго треугольника. Чему равен катет, противолежащий углу 54°, если сумма длин основания и боковой стороны золотого треугольника равна 36.

Задачу решили: 23
всего попыток: 29
Задача опубликована: 05.02.24 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

В области, ограниченной параболой y = 8 − x2 и осью Ox, находится 25 целочисленных точек (см. рис.).

Парабола и целочисленные точки

При каком натуральном значении k количество точек с целочисленными координатами, находящимся внутри области, ограниченной параболой y = k − x2 и осью Ox равно 2024.

Задачу решили: 21
всего попыток: 52
Задача опубликована: 07.02.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: vochfid

Радиус вписанной окружности в треугольник со сторонами 6 м и 10 м равен 2 м. Найти наибольшее значение третьей стороны в мм, округлив его до ближайшего целого.

Задачу решили: 16
всего попыток: 59
Задача опубликована: 09.02.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MikeNik (Mikhail Nikitkov)

Прямоугольник размера N x 1 помещается в прямоугольнике размера L x K.

Прямоугольник в прямоугольнике

Определим функцию f(K, L) как наибольшее целое N. Найдите сумму: f(7, 7) + f(7, 8) + f(7, 9) + ... + f(7, 1000).

Задачу решили: 18
всего попыток: 24
Задача опубликована: 13.03.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kf_GoldFish

Два прямоугольных треугольника, в каждом из которых проведены высоты с прямого угла и по одной биссектрисе с острого угла. В одном тругольнике точка пересечения высоты и биссектрисы делит высоту на отрезки 15 и 9, считая от вершины прямого угла. В другом треугольнике делит биссектрису на отрезки 9 и 6, считая от вершины, с которой проведена биссектриса. Найти отношение площадей треугольников (меньшей к большей).

Задачу решили: 19
всего попыток: 22
Задача опубликована: 20.03.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Найти диаметр окружности, описанной около шестиугольника, у которого длины каждой из 4-х сторон равна 15, каждой из оставшихся 2-х других сторон равна 7.

Задачу решили: 14
всего попыток: 17
Задача опубликована: 22.03.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

На рисунке изображена красная «змейка», представляющая собой бесконечную ломаную, соседние звенья которой перпендикулярны, длины её звеньев – натуральные числа 1, 2, 3, …

Ломаная в параболе

Докажите, что все вершины ломаной лежат на параболе. Ломаная делит внутреннюю область параболы на криволинейные треугольники, площади которых соответственно равны S1, S2, S3, …

Найдите площадь S100 сотого криволинейного треугольника и укажите ее в ответе.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.