Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
50
всего попыток:
154
Внутри прямоугольного треугольника ABC нашлись две точки, одна из которых удалена от прямых AB, BC и CA на расстояния 20, 24 и 30 соответственно, а другая — на расстояния 30, 26 и 20. Найдите сумму всех возможных значений периметра треугольника ABC.
Задачу решили:
40
всего попыток:
165
Существует ли вписанный в окружность n-угольник с попарно различными сторонами, каждая из которых является стороной некоторого, вписанного в ту же окружность, правильного многоугольника? (Если не существует, введите 0; если существует, укажите минимальное значение n.)
Задачу решили:
41
всего попыток:
213
Единичный вектор проектируется на прямые, содержащие диагонали правильного одиннадцатиугольника. Сумма указанных проекций образует вектор a. Найти максимальное значение длины вектора a.
Задачу решили:
95
всего попыток:
117
Хорда удалена от центра окружности на расстояние 60. В каждый из двух полученных сегментов вписан квадрат так, что пара его соседних вершин лежит на хорде, а другая пара вершин — на соответствующей дуге окружности. Найдите разность длин сторон квадратов.
Задачу решили:
12
всего попыток:
49
На листе бумаги в форме равностороннего треугольника со стороной 30 см разбрызганы капли чернил. Если на этом листе нарисовать (косоугольную) систему координат с произвольным началом, осями, параллельными любым двум сторонам листа, и масштабом 1 см вдоль обеих осей, то хотя бы одна точка с целыми координатами обязательно окажется окрашенной чернилами. Какое наименьшее целое число квадратных миллиметров может составлять общая площадь всех клякс? (Можно считать, что каждая клякса — многоугольник или круг, а всех клякс — конечное число.)
(Присланная задача изменена администрацией)
Задачу решили:
101
всего попыток:
154
На окружности отмечены четыре точки A, B, C и D так, что хорды AC и BD перпендикулярны друг другу, а AB=4, BC=8 и CD=13. Найдите площадь четырёхугольника ABCD.
Задачу решили:
52
всего попыток:
359
На окружности отмечены четыре точки A, B, C и D так, что хорды AC и BD перпендикулярны друг другу, а AB=4 и CD=13. Сколько различных целочисленных значений может принимать площадь четырёхугольника ABCD с такими условиями?
Задачу решили:
77
всего попыток:
91
В окружность вписан четырёхугольник ABCD. Прямые AB и CD перпендикулярны. Диагонали: AC=80 и BD=39. Найдите диаметр окружности.
Задачу решили:
65
всего попыток:
100
Вписанный в окружность 2011-угольник разрезали на треугольники вдоль не пересекающихся внутри него диагоналей. Найдите наибольшее число прямоугольных треугольников.
Задачу решили:
58
всего попыток:
501
Внутри выпуклого четырёхугольника с периметром 60 отмечена точка. Найдите наибольшее целое значение суммы четырёх расстояний от неё до вершин четырёхугольника.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|