Лента событий:
avilow предложил задачу "Ломаные маршруты - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
42
всего попыток:
58
Вершину С правильного треугольника АВС соединили отрезком с точкой M, делящей сторону AB в отношении 3:5. В образовавшиеся при этом два треугольника вписали круги, площадь меньшего из них равна 52. Найдите площадь большего круга.
Задачу решили:
24
всего попыток:
75
Сколько существует различных (попарно не конгруэнтных) треугольников, площадь которых и площади квадратов, построенных на их сторонах, - целые числа, не превосходящие 10?
Задачу решили:
22
всего попыток:
81
Пять точек на плоскости расположены так, что среди всех прямых соединяющих любые две из них нет параллельных, совпадающих и перпендикулярных друг другу. Через каждую из исходный точек проводятся перпендикуляры ко всем прямым, соединяющим каждые две из остальных четырех точек. Какое максимальное количество точек пересечения этих перпендикуляров между собой окажется, не считая исходных пять точек.
Задачу решили:
35
всего попыток:
43
В равнобедренном треугольнике АВС (АС - основание), боковая сторона которого равна 8, а основание равно радиусу описанной окружности, проведена высота BD и перпендикуляры DE, DF к боковым сторонам. Найти площадь пятиугольника AEOFC (O - центр описанной окружности).
Задачу решили:
18
всего попыток:
22
Внутри равностороннего треугольника ABC случайным образом выбрана точка D. Из отрезков AD, BD и CD составлен треугольник. Определите его углы, если известно, что угол ADB = α, угол CDA = β.
Задачу решили:
17
всего попыток:
18
На каждой грани кубика написано число. При одновременном бросании двух кубиков кубик A выигрывает у кубика B, если число, выпавшее на кубике A больше числа, выпавшего на кубике B. Будем говорить, что кубик A сильнее кубика B, если кубик A чаще выигрывает у кубика B и записывать A > B. Можно ли на гранях пяти кубиков расставить числа от 1 до 30 (каждое по одному разу) так, чтобы оказалось: Зеленый кубик > Черный кубик > Оранжевый кубик > Желтый кубик > Белый кубик > Зеленый кубик ? На приведенном примере числа на кубиках расставлены случайным образом.
Задачу решили:
30
всего попыток:
51
Дан равносторонний треугольник KMN (|КМ|=32), вершины которого являются центрами квадратов, построенных на сторонах некоторого треугольника АВС. Найдите площадь треугольника АВС, а в ответе укажите ближайшее целое число.
Задачу решили:
21
всего попыток:
25
В треугольнике ABC соотношения длин сторон: Пусть m - окружность, описанная около треугольника ABC, её длина равна 1440. n - окружность, вписанная в треугольнике ABC. Определим множество W всех таких точек M на окружности m, которые обладают следующим свойством: Очевидно, точки A, B и С принадлежат множеству W. Известно, что множество W можно разбивать на взаимно непересекающиеся сплошные дуги на окружности m. Чему равна их суммарная длина?
Задачу решили:
21
всего попыток:
70
Если бумажную полосу единичной ширины завязать простым узлом так, чтобы он стал плоским, то узел примет форму правильного пятиугольника (рис. слева). Пятиугольник на рисунке справа получен из бумажной полосы завязыванием пяти таких узлов. Чему равна длина полосы, если в сложенном виде её противоположные концы совпадают с отрезком АВ. Ответ округлите до целого числа.
Задачу решили:
30
всего попыток:
33
На диагонали АС квадрата АВСD построили прямоугольник APQC (AP=AB) так,что вершина В оказалась внутри прямоугольника. Прямая PB пересекает сторону DQ треугольникa DPQ в точке К и делит его на два треугольника DPK и PQK, у которых площади S1 и S2 соответственно. Найти (|S1|2-|S2|2)/(|S1|*|S2|).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|