img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: avilow предложил задачу "Ломаные маршруты - 2" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 26
всего попыток: 30
Задача опубликована: 11.11.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В тетраэдре одно и только одно ребро имеет длину более 1. Найдите максимально возможные объем тетраэдра.

Задачу решили: 23
всего попыток: 33
Задача опубликована: 13.11.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: mikev

Найдите максимальный радиус сферы, которую можно поместить в каждый тетраэдр, все высоты которого больше 1.

Задачу решили: 31
всего попыток: 36
Задача опубликована: 16.11.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Для действительных x, y, z, t верны соотношения
x+y+z=t,
1/x+1/y+1/z=1/t,
x3+y3+z3=10003

Найдите сумму x+y+z+t.

Задачу решили: 28
всего попыток: 35
Задача опубликована: 18.11.20 08:00
Прислал: solomon img
Источник: Ленинградская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

В системе уравнений:
x2=a+(y-z)2,
y2=b+(z-x)2,
z2=c+(x-y)2,
a, b и c - различные натуральные числа, x,y и z - различные целые числа. Найти наименьшую сумму а+b+c.

Задачу решили: 32
всего попыток: 53
Задача опубликована: 20.11.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Пусть x, y и z - целые числа и x/(y + z) + y/(z + x) + z/(x + y) = 4. Найдите наименьшее положительное значение x+y+z.

Задачу решили: 29
всего попыток: 51
Задача опубликована: 25.11.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В равнобедренном треугольнике ABC |AB|=|AC| и угол BAC равен 20 градусов. Путь D точка на AB такая, что |AD|=|CD|, а E точка на AC такая, что |BC|=|CE|. Найти угол CDE в градусах.

Задачу решили: 39
всего попыток: 49
Задача опубликована: 30.11.20 08:00
Прислал: avilow img
Источник: По мотивам книги И.М. Гельфанд "Функции и гра...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

На рисунке представлены графики шести функций, содержащие операцию «целая часть числа» (антье).

Функции и графики

Графики обозначены латинскими буквами. Ниже приведены формулы этих функций, которые обозначены цифрами. Установите соответствие между графиками функций и их формулами.

В ответе запишите шестизначное число, которое получается после замены букв в слове ABCDEF соответствующими им цифрами. 

Задачу решили: 4
всего попыток: 5
Задача опубликована: 02.12.20 08:00
Прислал: DOMASH img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Разрежьте поверхность правильного октаэдра на две части с соотношением площадей 7:1 так, чтобы ими можно было оклеить без просветов и наложений простую (тригональную) бипирамиду.

Простая (тригональная) бипирамида - это многогранник, состоящий из двух равных правильных тетраэдров, имеющих общую грань.

Задачу решили: 30
всего попыток: 49
Задача опубликована: 04.12.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите минимальное значение a2+b2, где a и b - действительные числа, для которых уравнение x4+ax3+bx2+ax+1=0 имеет по крайней мере один действительный корень.

Задачу решили: 38
всего попыток: 42
Задача опубликована: 14.12.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Найдите сумму 20208+20218+...+20998. В качестве ответа введите число состоящее из последних двух цифр суммы.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.