img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 9
всего попыток: 14
Задача опубликована: 30.07.21 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Отрезки, соединяющие центры оснований правильной треугольной призмы и центры противоположных граней правильного октаэдра, совпадают. Боковое ребро призмы пересекает ребро октаэдра в его середине. Найти наибольшее отношение объёма общей части тел к объёму октаэдра.

Задачу решили: 12
всего попыток: 17
Задача опубликована: 02.08.21 08:00
Прислал: DOMASH img
Источник: Авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Высота правильной треугольной пирамиды соединяет центры двух противоположных граней правильного октаэдра, а боковое ребро пирамиды проходит через центр третьей грани октаэдра. Найти наименьшее отношение объёмов пирамиды и октаэдра.

Задачу решили: 20
всего попыток: 29
Задача опубликована: 04.08.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Последовательно применяя формулы для синуса и косинуса суммы двух углов, можно вывести формулы для синуса и косинуса суммы любого количества углов.

Формулы для синуса и косинуса суммы n углов имеют вид суммы всевозможных произведений k синусов и m косинусов (k+m=n) отдельных углов, с какими-то коэффициентами.

Т.к. формулы симметричны относительно углов, в каждой из них все слагаемые-призведения с одними и теми же k и m имеют один и тот же коэффициент. Обозначим его:
Sk,m – в формуле синуса суммы k+m углов;
Ck,m – в формуле косинуса суммы k+m углов.

Например:
С0,2 = 1, C1,1 = 0, C2,0 = -1.

Найдите сумму квадратов S579,420 и C579,421

Задачу решили: 18
всего попыток: 24
Задача опубликована: 06.08.21 08:00
Прислал: MMM img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg

Вундеркинд Вася нашёл очень старый калькулятор, на котором изображались числа, но лишь на 8-ми позициях. Проверяя калькулятор на разных умножениях чисел, он вспомнил простой метод: имеется равенство N*x=111111111 (9 единиц), где х - некая цифра (N легко запоминается). Однако такое произведение не может получиться на старом калькуляторе. Такое умножение N*8 позволяло бы легко проверить находку, но к несчастью, кнопки "2","6","8" не работали! Вдруг Васю осенило проверить находку на правильность деления: М/у=N (у - тоже цифра), а заодно - и умножения N*у=М. Итак, запросто обнаружилась возможность получить работоспособный калькулятор после мелкого ремонта! Кнопку "2" Васе удалось починить почти сразу и проверить умножение (N*2)*2*2=N*8. Пусть m - количество всех разных цифр в записи числа N*8. Чему равно М+m?

Задачу решили: 37
всего попыток: 52
Задача опубликована: 11.08.21 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Натуральный ряд записан построчно в виде числовой пирамиды: в первой строке записана 1, во второй строке – следующие два числа 2 и 3, в третьей строке – следующие три числа, и т.д., то есть в n-ой строке записаны n очередных чисел.

Треугольные рамки в пирамиде

Рассмотрим треугольные рамки, у которых одна вершина совпадает с вершиной пирамиды, две стороны параллельны боковым сторонам пирамиды, третья сторона содержит n-ую строку числовой пирамиды. На рисунке показана 6-ая рамка. Чему равна сумма всех чисел в 123-ей треугольной рамке?

Задачу решили: 22
всего попыток: 65
Задача опубликована: 13.08.21 08:00
Прислал: solomon img
Источник: Корейская олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

На стороне ВС треугольника АВС с целочисленными углами в градусах отмечена точка D, CD=AB, угол BAD=30°. Найти наибольший угол ВАС в градусах.

Задачу решили: 30
всего попыток: 40
Задача опубликована: 03.09.21 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В прямоугольнике, разделенном на 2 квадрата, проведены полуокружности и в результате построений образовался шестиугольник.

3

Какая доля шестиугольника закрашена?

Задачу решили: 30
всего попыток: 35
Задача опубликована: 08.09.21 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Середины противоположных сторон жёлтого правильного шестиугольника соединены непрерывной ломаной со звеньями от 1 до 20 и углами между ними ∏/3, а середины противоположных сторон синего правильного шестиугольника соединены аналогичной ломаной со звеньями от 1 до 21. Найти отношение стороны желтого шестиугольника к стороне синего.

Два шестиугольника

Задачу решили: 28
всего попыток: 49
Задача опубликована: 10.09.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В правильном треугольнике расположена точка,отстоящая от вершин треугольника на расстоянии 3,4,5. Найдите площадь треугольника. Ответ укажите с точностью до одного знака после запятой.

Задачу решили: 18
всего попыток: 23
Задача опубликована: 15.09.21 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

В треугольнике АВС со сторонами |ВС|=12, |АС|=85 точка P является точкой пересечения высоты AD и срединного перпендикуляра к стороне АВ. На отрезке ВP взята точка Q так,что AQBC- вогнутый четырехугольник с размерами сторон |BQ|=5, |AQ|=84. Найти площадь треугольника АВС.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.