Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
23
всего попыток:
40
Костя выписал в строчку без пробелов все натуральные числа от 1 до N, а потом вычеркнул из строчки N одинаковых цифр. При каком наименьшем N>1 это могло случиться?
Задачу решили:
38
всего попыток:
53
Найти угол α в градусах.
Задачу решили:
34
всего попыток:
44
Два оранжевых прямоугольных треугольника имеют одинаковую площадь, пятиугольник - правильный. Найдите (a/b-1)2.
Задачу решили:
17
всего попыток:
62
На шахматной доске n на n расставлены n2 ферзей n различных цветов, по n ферзей каждого цвета. Каждый ферзь стоит на отдельной клетке, и ни один ферзь не стоит ни на той же горизонтали, ни на той же вертикали, ни на той же диагонали (большой или маленькой) что другой ферзь того же цвета. На рисунке показан пример такой расстановки ферзей для n=5: Найдите 4 наименьших натуральных числа n, для которых это возможно. Укажите в ответе их сумму.
Задачу решили:
31
всего попыток:
39
Вокруг равностороннего треугольника ABC описана окружность радиуса R, на которой выбрана точка K, лежащая на луче выходящем из угла A. Угол BAK равен 15 градусов. Найдите (|KA|4+|KB|4+|KC|4)/R4.
Задачу решили:
23
всего попыток:
67
На доске 5x5 расставлены 25 шашек реверси. За один ход разрешено перевернуть любую шашку и все соседние с ней (по стороне). Перевернутая шашка имеет другой цвет. Вначале все шашки белые. За какое наименьшее число ходов удастся получить позицию с одной чёрной шашкой?
Задачу решили:
25
всего попыток:
28
Отношение стороны ромба ABCD к расстоянию между центрами окружностей, описанных около треугольников ABC и BCD, равно 3:4. Найти отношение радиусов (меньшего к большему) этих окружностей.
Задачу решили:
29
всего попыток:
32
Пять квадратов касаются вершинами: Найдите отношение площадей треугольников A/B.
Задачу решили:
11
всего попыток:
94
Дан выпуклый четырехугольник ABCD, в котором проведены диагонали, пересекающиеся в точке K. При этом длины всех восьми полученных отрезков AB, BC, CD, AD, AK, BK, CK, DK это различные целые числа. Найдите сумму длин этих отрезков для четырехугольника с наименьшей площадью.
Задачу решили:
37
всего попыток:
53
Из 7 равных спичек сложили фигуру (см. рис.) Найти угол α в радианах в виде πp/q. В ответ введите p/q.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|