img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 23
всего попыток: 32
Задача опубликована: 18.03.22 08:00
Прислал: TALMON img
Источник: Задачи и головоломки на FB
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На рисунке изображена 11-конечная звезда с концами в 11-и точках, определяющих на параболе y=x² десять дуг одинаковой длины, от точки (-2, 4) до точки (2, 4).

11-конечная звезда на параболе

Чему равна сумма углов концов звезды (в градусах)?

Задачу решили: 28
всего попыток: 32
Задача опубликована: 23.03.22 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

В прямоугольник с площадью 5 вписана окружность, касающаяся трех сторон. Хорда, образованная диагональю при пересечении окружности,равна 1. Найти отношение ширины к длине прямоугольника.

Задачу решили: 21
всего попыток: 32
Задача опубликована: 30.03.22 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Длина большего основания AD равнобокой трапеции ABCD с целочисленными значениями наибольшей площади и сторон равна 11. На продолжении прямой АВ отмечена точка В1 (|АВ|=|ВВ1|),на продолжении прямой ВС отмечена точка С1 (|ВС|=|СС1|), на продолжении прямой СD отмечена точка D1 (|CD|=|DD1|),на продолжении прямой DA отмечена точка А1 (|DA|=|AA1|). Найти площадь четырехугольника А1В1С1D1.

Задачу решили: 19
всего попыток: 37
Задача опубликована: 11.04.22 08:00
Прислал: admin img
Источник: Задачи и головоломки на FB
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

У Кости есть игрушечная железная дорога в виде кольца, состоящая из n=13 равных дуг.

Железная дорога

Костя решил докупить ещё несколько таких же дуг, чтобы удлинить путь (при этом он уже не будет круговым, но должен остаться замкнутым и без самопересечений). Какое минимальное количество дуг ему хватит, чтобы осуществить задуманное?

Задачу решили: 16
всего попыток: 33
Задача опубликована: 13.04.22 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Куб 3х3х3 разбит на единичные кубики, все их вершины отмечены точками. Найдите число всех правильных треугольников, вершинами которых являются отмеченные точки. Три из них изображены на рисунке.

Треугольники в кубе

Задачу решили: 16
всего попыток: 26
Задача опубликована: 15.04.22 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

На сторонах АВ и ВС треугольника АВС отмечены точки D и E соответственно так, что отрезки АЕ и CD пересекаются в точке F,  делят треугольник на три треугольника CEF, ADF, ACF с целочисленными площадями, образующими арифметическую прогрессию, и четырехугольник BEFD с целочисленной площадью. Найти наименьшую площадь треугольника АВС.

Задачу решили: 14
всего попыток: 41
Задача опубликована: 18.04.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Вова играл против компьютера в NIM. В какой-то момент он понял принцип работы компьютера! В частности, он понял, что следующая позиция – проигрышная:

Позиция П:
Первая куча – 1 спичка
Вторая куча – 3 спички.
Третья куча – 5 спичек.
Четвёртая куча – 7 спичек.

И тут, заметив, что компьютер играет как-то однобоко – делает выигрывающий ход именно с первой же кучей, с которой это возможно (номера куч остаются всё время неизменными), придумал себе забаву.

Один ход человека заключался в нажатии мышью на те спички, которые он удаляет. Например, если он хочет удалить 4 спички из какой-то кучи, то он поочерёдно нажимает на 4 спички в этой куче.

Так вот, Вова, зная, что, получив позицию П он проиграет, хочет минимизировать количество своих нажатий с этой позиции до конца игры. Чему равен этот минимум?

Его товарищ Вася, будучи в курсе всех этих дел, придумал себе противоположную забаву: как из той же позиции П максимизировать общее количество своих нажатий до конца игры.

Чему равен этот максимум?

Введите в ответе произведение этих двух чисел – минимум Вовы и максимум Васи.

Задачу решили: 23
всего попыток: 30
Задача опубликована: 29.04.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В правильной треугольной призме ABCA’B’C’ на рёбрах AA’, BB’, CC’ отмечены соответственно точки A’’, B’’, C’’ так, что:
|AA’’| / |AA’| = 1/2,
|BB’’| / |BB’| = 2/7,
|CC’’| / |CC’| = 4/5.

Части рёбер и объёма

Найдите соотношение объёма многогранника ABCA’’B’’C’’ к объёму призмы.

Задачу решили: 16
всего попыток: 29
Задача опубликована: 11.05.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Sam777e

На столе расположены 2022 кучи спичек. Кучи пронумерованы: 1, 2, 3,... , 2022. В каждой k-й куче по k спичек.

Играют двое поочерёдно. Каждый игрок своим ходом убирает со стола любое натуральное количество спичек из одной (любой) кучи. Выигрывает игрок, убравший последнюю спичку со стола.

Сколько вариантов выигрывающего первого хода есть у начинающего?

Задачу решили: 19
всего попыток: 31
Задача опубликована: 13.05.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Sam777e

На столе расположена 2021 куча спичек. Кучи пронумерованы: 1, 2, 3,... , 2021. В каждой k-й куче по k спичек.

Играют двое поочерёдно. Каждый игрок своим ходом убирает со стола любое натуральное количество спичек из одной (любой) кучи. Выигрывает игрок, убравший последнюю спичку со стола.

Сколько вариантов выигрывающего первого хода есть у начинающего?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.