img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 264
всего попыток: 502
Задача опубликована: 01.04.09 22:49
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: solomon

В выборах в стоместный парламент участвовали 12 партий. В парламент проходят партии, за которые проголосовало строго больше 5% избирателей. Между прошедшими в парламент партиями места распределяются пропорционально числу набранных ими голосов (т.е. если одна из партий набрала в x раз больше голосов, чем другая, то и мест в парламенте она получит в x раз больше). После выборов оказалось, что каждый избиратель проголосовал ровно за одну из партий (недействительных бюллетеней, голосов "против всех" и т.п. не было) и каждая партия получила целое число мест. При этом Партия участников проекта "Диофант" набрала 25% голосов. Какое наибольшее число мест в парламенте она могла получить?

Задачу решили: 194
всего попыток: 660
Задача опубликована: 01.04.09 22:49
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: gpariska (Галина Парижская)

Наибольший общий делитель (НОД) натуральных чисел m и n равен 1. Каково максимально возможное значение НОД чисел m+100n и n+100m?

+ 27
+ЗАДАЧА 45. Коробочка (Н.Б.Васильев)
  
Задачу решили: 115
всего попыток: 372
Задача опубликована: 01.04.09 22:49
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

Какова наибольшая возможная площадь ортогональной проекции на горизонтальную плоскость прямоугольного параллелепипеда со сторонами 10, 20 и 30 см? (Ответ дайте в квадратных сантиметрах.)

+ 52
+ЗАДАЧА 53. Хитрая улитка I (Н.Н.Константинов)
  
Задачу решили: 202
всего попыток: 752
Задача опубликована: 12.04.09 10:03
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: lime (Kozinson Nik)

Улитка ползет вперед по прямой с непостоянной скоростью. Назад она не поворачивает, но может останавливаться. Несколько человек наблюдают за ней по очереди: каждый из них (кроме первого) начинает наблюдение позже, чем начинает предыдущий, но раньше, чем он заканчивает. Каждый из наблюдателей следит за улиткой ровно 10 минут и замечает, что за это время она проползла ровно 10 см. Количество наблюдателей неизвестно, но общее время их наблюдения составляет 1 час: последний заканчивает наблюдать ровно через час после того, как начинает первый.

Какое максимальное расстояние может проползти улитка за 1 час наблюдений при этих условиях? (Ответ дать в сантиметрах.)

Задачу решили: 201
всего попыток: 1035
Задача опубликована: 12.04.09 10:07
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kf_GoldFish

На доске выписаны подряд целые числа от 0 до 1024 — всего 1025 чисел. Двое играют в такую игру. Сначала первый стирает 512 чисел, потом второй стирает 256 чисел, потом первый 128, потом второй 64 и т.д. На десятом ходу второй стирает одно число, после чего первый выплачивает ему разницу между двумя оставшимися числами. Какую сумму он получит при наилучшей стратегии обоих игроков?

Задачу решили: 171
всего попыток: 572
Задача опубликована: 16.04.09 20:17
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

На сколько процентов максимально возможная площадь круга, лежащего внутри куба, больше площади круга, вписанного в его грань?

Задачу решили: 140
всего попыток: 412
Задача опубликована: 16.04.09 20:17
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100

Сколько градусов составляет наименьший угловой размер большой диагонали куба, если смотреть с его поверхности (исключая, разумеется, концы самой диагонали)?

+ 19
+ЗАДАЧА 61. Номера у рёбер куба (Н.Б.Васильев, Н.Н.Константинов)
  
Задачу решили: 123
всего попыток: 463
Задача опубликована: 21.04.09 10:45
Прислал: demiurgos img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Сколько имеется различных нумераций всех рёбер куба числами от 1 до 12, обладающих следующим свойством: сумма номеров рёбер, сходящихся в одной вершине, — одна и та же для всех вершин куба? (Две нумерации считаются разными, если они не переходят друг в друга при любом вращении куба.)

Задачу решили: 129
всего попыток: 1028
Задача опубликована: 22.04.09 20:25
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100

В центре квадрата пасётся антилопа, а в его вершинах притаились четыре гепарда, которые могут бегать со скоростью не более 99 км/ч, но только по сторонам квадрата. С какой скоростью должна бежать антилопа, чтобы вырваться за пределы квадрата при любой тактике гепардов?

(В ответе укажите минимально возможное целое значение её допустимой скорости в км/ч, единицы измерения не вводите. Антилопа и гепарды — это точки на плоскости.)

+ 37
+ЗАДАЧА 66. Хитрая улитка II (Н.Н.Константинов)
  
Задачу решили: 164
всего попыток: 717
Задача опубликована: 23.04.09 09:56
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Crazy_666

Улитка ползёт вперед по прямой с непостоянной скоростью. Назад она не поворачивает, но может останавливаться. Несколько человек наблюдают за ней по очереди: каждый из них (кроме первого) начинает наблюдение позже, чем начинает предыдущий, но раньше, чем он заканчивает. Каждый из наблюдателей следит за улиткой ровно 10 минут и замечает, что за это время она проползла ровно 10 см. Количество наблюдателей неизвестно, но общее время их наблюдения составляет 1 час: последний заканчивает наблюдать ровно через час после того, как начинает первый.

Какое минимальное расстояние может проползти улитка за 1 час наблюдений при этих условиях? (Ответ дать в сантиметрах.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.